Displaying similar documents to “Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source”

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion

Moshe Marcus, Laurent Véron (2004)

Journal of the European Mathematical Society

Similarity:

Let Ω be a bounded domain of class C 2 in N and let K be a compact subset of Ω . Assume that q ( N + 1 ) / ( N 1 ) and denote by U K the maximal solution of Δ u + u q = 0 in Ω which vanishes on Ω K . We obtain sharp upper and lower estimates for U K in terms of the Bessel capacity C 2 / q , q ' and prove that U K is σ -moderate. In addition we describe the precise asymptotic behavior of U K at points σ K , which depends on the “density” of K at σ , measured in terms of the capacity C 2 / q , q ' .

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...

L p -improving properties of certain singular measures on the Heisenberg group

Pablo Rocha (2022)

Mathematica Bohemica

Similarity:

Let μ A be the singular measure on the Heisenberg group n supported on the graph of the quadratic function ϕ ( y ) = y t A y , where A is a 2 n × 2 n real symmetric matrix. If det ( 2 A ± J ) 0 , we prove that the operator of convolution by μ A on the right is bounded from L ( 2 n + 2 ) ( 2 n + 1 ) ( n ) to L 2 n + 2 ( n ) . We also study the type set of the measures d ν γ ( y , s ) = η ( y ) | y | - γ d μ A ( y , s ) , for 0 γ < 2 n , where η is a cut-off function around the origin on 2 n . Moreover, for γ = 0 we characterize the type set of ν 0 .

Involutivity degree of a distribution at superdensity points of its tangencies

Silvano Delladio (2021)

Archivum Mathematicum

Similarity:

Let Φ 1 , ... , Φ k + 1 (with k 1 ) be vector fields of class C k in an open set U N + m , let 𝕄 be a N -dimensional C k submanifold of U and define 𝕋 : = { z 𝕄 : Φ 1 ( z ) , ... , Φ k + 1 ( z ) T z 𝕄 } where T z 𝕄 is the tangent space to 𝕄 at z . Then we expect the following property, which is obvious in the special case when z 0 is an interior point (relative to 𝕄 ) of 𝕋 : If z 0 𝕄 is a ( N + k ) -density point (relative to 𝕄 ) of 𝕋 then all the iterated Lie brackets of order less or equal to k Φ i 1 ( z 0 ) , [ Φ i 1 , Φ i 2 ] ( z 0 ) , [ [ Φ i 1 , Φ i 2 ] , Φ i 3 ] ( z 0 ) , ... ( h , i h k + 1 ) belong to T z 0 𝕄 . Such a property has been proved in [9] for k = 1 and its proof in the...

Nonexistence results for the Cauchy problem of some systems of hyperbolic equations

Mokhtar Kirane, Salim Messaoudi (2002)

Annales Polonici Mathematici

Similarity:

We consider the systems of hyperbolic equations ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | v | p , t > 0, x N , (S1) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | u | q , t > 0, x N u = Δ ( a ( t , x ) u ) + h ( t , x ) | v | p , t > 0, x N , (S2) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + l ( t , x ) | v | m + k ( t , x ) | u | q , t > 0, x N , (S3) ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | u | p , t > 0, x N , ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | v | q , t > 0, x N , in ( 0 , ) × N with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.