A conjecture on minimum permanents
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 1, page 273-282
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCheon, Gi-Sang, and Song, Seok-Zun. "A conjecture on minimum permanents." Czechoslovak Mathematical Journal 74.1 (2024): 273-282. <http://eudml.org/doc/299237>.
@article{Cheon2024,
abstract = {We consider the permanent function on the faces of the polytope of certain doubly stochastic matrices, whose nonzero entries coincide with those of fully indecomposable square $(0,1)$-matrices containing the identity submatrix. We show that a conjecture in K. Pula, S. Z. Song, I. M. Wanless (2011), is true for some cases by determining the minimum permanent on some faces of the polytope of doubly stochastic matrices.},
author = {Cheon, Gi-Sang, Song, Seok-Zun},
journal = {Czechoslovak Mathematical Journal},
keywords = {permanent; doubly stochastic; barycentric; cohesive matrix},
language = {eng},
number = {1},
pages = {273-282},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A conjecture on minimum permanents},
url = {http://eudml.org/doc/299237},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Cheon, Gi-Sang
AU - Song, Seok-Zun
TI - A conjecture on minimum permanents
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 1
SP - 273
EP - 282
AB - We consider the permanent function on the faces of the polytope of certain doubly stochastic matrices, whose nonzero entries coincide with those of fully indecomposable square $(0,1)$-matrices containing the identity submatrix. We show that a conjecture in K. Pula, S. Z. Song, I. M. Wanless (2011), is true for some cases by determining the minimum permanent on some faces of the polytope of doubly stochastic matrices.
LA - eng
KW - permanent; doubly stochastic; barycentric; cohesive matrix
UR - http://eudml.org/doc/299237
ER -
References
top- Brualdi, R. A., 10.1080/03081088508817637, Linear Multilinear Algebra 17 (1985), 5-18. (1985) Zbl0564.15010MR0859664DOI10.1080/03081088508817637
- Foregger, T. H., 10.1016/0024-3795(80)90008-7, Linear Algebra Appl. 32 (1980), 75-85. (1980) Zbl0441.15005MR0577907DOI10.1016/0024-3795(80)90008-7
- Pula, K., Song, S.-Z., Wanless, I. M., 10.1016/j.laa.2010.08.015, Linear Algebra Appl. 434 (2011), 232-238. (2011) Zbl1209.15013MR2737245DOI10.1016/j.laa.2010.08.015
- Song, S.-Z., 10.1016/0024-3795(91)90005-H, Linear Algebra Appl. 143 (1991), 49-56. (1991) Zbl0712.15018MR1077723DOI10.1016/0024-3795(91)90005-H
- Song, S.-Z., Beasley, L. B., 10.1080/03081087.2023.2190073, (to appear) in Linear Multilinear Algebra. DOI10.1080/03081087.2023.2190073
- Song, S.-Z., Hong, S. M., Jun, Y.-B., Kim, S.-J., 10.1016/s0024-3795(96)00248-0, Linear Algebra Appl. 259 (1997), 169-182. (1997) Zbl0955.15009MR1450536DOI10.1016/s0024-3795(96)00248-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.