On the bounding, splitting, and distributivity numbers
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 3, page 331-351
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDow, Alan S., and Shelah, Saharon. "On the bounding, splitting, and distributivity numbers." Commentationes Mathematicae Universitatis Carolinae 64.3 (2023): 331-351. <http://eudml.org/doc/299239>.
@article{Dow2023,
abstract = {The cardinal invariants $ \mathfrak \{h\}, \mathfrak \{b\},\mathfrak \{s\}$ of $ \mathcal \{P\} (\omega )$ are known to satisfy that $\omega _1 \le \mathfrak \{h\} \le \min \lbrace \mathfrak \{b\}, \mathfrak \{s\}\rbrace $. We prove that all inequalities can be strict. We also introduce a new upper bound for $\mathfrak \{h\}$ and show that it can be less than $\mathfrak \{s\}$. The key method is to utilize finite support matrix iterations of ccc posets following paper Ultrafilters with small generating sets by A. Blass and S. Shelah (1989).},
author = {Dow, Alan S., Shelah, Saharon},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cardinal invariants of the continuum; matrix forcing},
language = {eng},
number = {3},
pages = {331-351},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the bounding, splitting, and distributivity numbers},
url = {http://eudml.org/doc/299239},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Dow, Alan S.
AU - Shelah, Saharon
TI - On the bounding, splitting, and distributivity numbers
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 3
SP - 331
EP - 351
AB - The cardinal invariants $ \mathfrak {h}, \mathfrak {b},\mathfrak {s}$ of $ \mathcal {P} (\omega )$ are known to satisfy that $\omega _1 \le \mathfrak {h} \le \min \lbrace \mathfrak {b}, \mathfrak {s}\rbrace $. We prove that all inequalities can be strict. We also introduce a new upper bound for $\mathfrak {h}$ and show that it can be less than $\mathfrak {s}$. The key method is to utilize finite support matrix iterations of ccc posets following paper Ultrafilters with small generating sets by A. Blass and S. Shelah (1989).
LA - eng
KW - cardinal invariants of the continuum; matrix forcing
UR - http://eudml.org/doc/299239
ER -
References
top- Balcar B., Pelant J., Simon P., 10.4064/fm-110-1-11-24, Fund. Math. 110 (1980), no. 1, pages 11–24. MR0600576DOI10.4064/fm-110-1-11-24
- Baumgartner J. E., Dordal P., 10.2307/2273792, J. Symbolic Logic 50 (1985), no. 1, 94–101. MR0780528DOI10.2307/2273792
- Blass A., 10.1007/BFb0097329, Conf. Set Theory and Its Applications, Toronto, 1987, Lecture Notes in Math., 1401, Springer, Berlin, 1989, pages 18–40. MR1031763DOI10.1007/BFb0097329
- Blass A., Shelah S., 10.1007/BF02764864, Israel J. Math. 65 (1989), no. 3, 259–271. MR1005010DOI10.1007/BF02764864
- Brendle J., Fischer V., 10.2178/jsl/1294170995, J. Symbolic Logic 76 (2011), no. 1, 198–208. MR2791343DOI10.2178/jsl/1294170995
- Brendle J., Raghavan D., 10.1016/j.apal.2013.09.002, Ann. Pure Appl. Logic 165 (2014), no. 2, 631–651. MR3129732DOI10.1016/j.apal.2013.09.002
- Dow A., Shelah S., 10.1016/j.indag.2017.01.010, Indag. Math. (N.S.) 29 (2018), no. 1, 382–395. MR3739621DOI10.1016/j.indag.2017.01.010
- Dow A., Shelah S., 10.1007/s00153-019-00674-x, Arch. Math. Logic 58 (2019), no. 7–8, 1005–1027. MR4003647DOI10.1007/s00153-019-00674-x
- Fischer V., Friedman S. D., Mejía D. A., Montoya D. C., 10.1017/jsl.2017.20, J. Symb. Log. 83 (2018), no. 1, 208–236. MR3796283DOI10.1017/jsl.2017.20
- Fischer V., Mejia D. A., 10.4153/CJM-2016-021-8, Canad. J. Math. 69 (2017), no. 3, 502–531. MR3679685DOI10.4153/CJM-2016-021-8
- Fischer V., Steprāns J., The consistency of and , Fund. Math. 201 (2008), no. 3, 283–293. MR2457482
- Goldstern M., Kellner J., Mejía D. A., Shelah S., 10.1007/s11856-021-2237-7, Israel J. Math. 246 (2021), no. 1, 73–129. MR4358274DOI10.1007/s11856-021-2237-7
- Ihoda J. I., Shelah S., 10.2307/2274613, J. Symbolic Logic 53 (1988), no. 4, 1188–1207. MR0973109DOI10.2307/2274613
- Jech T., Set Theory, Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl1007.03002MR1940513
- Kunen K., Vaughan J. E., Handbook of Set-theoretic Topology, North-Holland Publishing Co., Amsterdam, 1984. Zbl0674.54001MR0776619
- Mejía D. A., 10.1007/s00153-012-0315-6, Arch. Math. Logic 52 (2013), no. 3–4, 261–278. MR3047455DOI10.1007/s00153-012-0315-6
- Shelah S., 10.1090/conm/031/763901, Conf. Axiomatic Set Theory, Boulder, 1983, Contemp. Math., 31, Amer. Math. Soc., Providence, 1984, pages 183–207. Zbl0583.03035MR0763901DOI10.1090/conm/031/763901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.