More on the strongly 1-absorbing primary ideals of commutative rings

Ali Yassine; Mohammad Javad Nikmehr; Reza Nikandish

Czechoslovak Mathematical Journal (2024)

  • Issue: 1, page 115-126
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative ring with identity. We study the concept of strongly 1-absorbing primary ideals which is a generalization of n -ideals and a subclass of 1 -absorbing primary ideals. A proper ideal I of R is called strongly 1-absorbing primary if for all nonunit elements a , b , c R such that a b c I , it is either a b I or c 0 . Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings R over which every semi-primary ideal is strongly 1-absorbing primary, and rings R over which every strongly 1-absorbing primary ideal is prime (or primary) are characterized. Many examples are given to illustrate the obtained results.

How to cite

top

Yassine, Ali, Nikmehr, Mohammad Javad, and Nikandish, Reza. "More on the strongly 1-absorbing primary ideals of commutative rings." Czechoslovak Mathematical Journal (2024): 115-126. <http://eudml.org/doc/299240>.

@article{Yassine2024,
abstract = {Let $R$ be a commutative ring with identity. We study the concept of strongly 1-absorbing primary ideals which is a generalization of $n$-ideals and a subclass of $1$-absorbing primary ideals. A proper ideal $I$ of $R$ is called strongly 1-absorbing primary if for all nonunit elements $a,b,c \in R$ such that $abc \in I$, it is either $ab \in I$ or $c \in \sqrt\{0\}$. Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings $R$ over which every semi-primary ideal is strongly 1-absorbing primary, and rings $R$ over which every strongly 1-absorbing primary ideal is prime (or primary) are characterized. Many examples are given to illustrate the obtained results.},
author = {Yassine, Ali, Nikmehr, Mohammad Javad, Nikandish, Reza},
journal = {Czechoslovak Mathematical Journal},
keywords = {strongly 1-absorbing primary ideal; $n$-ideal; primary ideal; semi-primary ideal},
language = {eng},
number = {1},
pages = {115-126},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {More on the strongly 1-absorbing primary ideals of commutative rings},
url = {http://eudml.org/doc/299240},
year = {2024},
}

TY - JOUR
AU - Yassine, Ali
AU - Nikmehr, Mohammad Javad
AU - Nikandish, Reza
TI - More on the strongly 1-absorbing primary ideals of commutative rings
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 115
EP - 126
AB - Let $R$ be a commutative ring with identity. We study the concept of strongly 1-absorbing primary ideals which is a generalization of $n$-ideals and a subclass of $1$-absorbing primary ideals. A proper ideal $I$ of $R$ is called strongly 1-absorbing primary if for all nonunit elements $a,b,c \in R$ such that $abc \in I$, it is either $ab \in I$ or $c \in \sqrt{0}$. Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings $R$ over which every semi-primary ideal is strongly 1-absorbing primary, and rings $R$ over which every strongly 1-absorbing primary ideal is prime (or primary) are characterized. Many examples are given to illustrate the obtained results.
LA - eng
KW - strongly 1-absorbing primary ideal; $n$-ideal; primary ideal; semi-primary ideal
UR - http://eudml.org/doc/299240
ER -

References

top
  1. Almahdi, F. A. A., Bouba, E. M., Koam, A. N. A., 10.4134/BKMS.b190877, Bull. Korean Math. Soc. 57 (2020), 1205-1213. (2020) Zbl1454.13004MR4155008DOI10.4134/BKMS.b190877
  2. Anderson, D. D., Winders, M., 10.1216/JCA-2009-1-1-3, J. Commut. Algebra 1 (2009), 3-56. (2009) Zbl1194.13002MR2462381DOI10.1216/JCA-2009-1-1-3
  3. Badawi, A., 10.1017/S0004972700039344, Bull. Aust. Math. Soc. 75 (2007), 417-429. (2007) Zbl1120.13004MR2331019DOI10.1017/S0004972700039344
  4. Badawi, A., Tekir, U., Yetkin, E., 10.4134/BKMS.2014.51.4.1163, Bull. Korean Math. Soc. 51 (2014), 1163-1173. (2014) Zbl1308.13001MR3248714DOI10.4134/BKMS.2014.51.4.1163
  5. Badawi, A., Yetkin, E., 10.1142/S021949882050111X, J. Algebra Appl. 19 (2020), Article ID 2050111, 12 pages. (2020) Zbl1440.13008MR4120088DOI10.1142/S021949882050111X
  6. Beddani, C., Messirdi, W., 10.1142/S0219498816500511, J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. (2016) Zbl1338.13038MR3454713DOI10.1142/S0219498816500511
  7. R. W. Gilmer, Jr., 10.2140/pjm.1962.12.1273, Pac. J. Math. 12 (1962), 1273-1276. (1962) Zbl0118.27201MR0158898DOI10.2140/pjm.1962.12.1273
  8. R. W. Gilmer, Jr., 10.1215/S0012-7094-64-03106-0, Duke Math. J. 31 (1964), 73-78. (1964) Zbl0122.29002MR0162816DOI10.1215/S0012-7094-64-03106-0
  9. R. W. Gilmer, Jr., J. L. Mott, 10.1090/S0002-9947-1965-0171803-X, Trans. Am. Math. Soc. 114 (1965), 40-52. (1965) Zbl0136.02402MR0171803DOI10.1090/S0002-9947-1965-0171803-X
  10. Krull, W., 10.1007/978-3-642-87033-0, Ergebnisse der Mathematik und ihrer Grenzgebiete 46. Springer, Berlin (1968), German. (1968) Zbl0155.36401MR0229623DOI10.1007/978-3-642-87033-0
  11. Lam, T. Y., 10.1007/978-1-4757-3987-9, Problem Books in Mathematics. Springer, New York (1995). (1995) Zbl0823.16001MR1323431DOI10.1007/978-1-4757-3987-9
  12. Leerawat, U., Somsup, C., 10.1080/09720529.2021.1936745, J. Discrete Math. Sci. Cryptography 24 (2021), 1785-1791. (2021) Zbl1487.13028MR4319150DOI10.1080/09720529.2021.1936745
  13. McCoy, N. H., 10.5948/9781614440086, The Carus Mathematical Monographs 8. Mathematical Association of America, Washington (1948). (1948) Zbl0041.36406MR0026038DOI10.5948/9781614440086
  14. Nikandish, R., Nikmehr, M. J., Yassine, A., 10.4134/BKMS.b190094, Bull. Korean Math. Soc. 57 (2020), 117-126. (2020) Zbl1440.13018MR4060186DOI10.4134/BKMS.b190094
  15. Sharp, R. Y., 10.1017/CBO9780511623684, London Mathematical Society Student Texts 51. Cambridge University Press, Cambridge (2000). (2000) Zbl0969.13001MR1817605DOI10.1017/CBO9780511623684
  16. Tamekkante, M., Bouba, E. M., 10.1142/S0219498819501032, J. Algebra Appl. 18 (2019), Article ID 1950103, 12 pages. (2019) Zbl1412.13005MR3954657DOI10.1142/S0219498819501032
  17. Tekir, U., Koc, S., Oral, K. H., 10.2298/FIL1710933T, Filomat 31 (2017), 2933-2941. (2017) Zbl1488.13016MR3639382DOI10.2298/FIL1710933T
  18. Yassine, A., Nikmehr, M. J., Nikandish, R., 10.1142/S0219498821501759, J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages. (2021) Zbl1479.13006MR4326079DOI10.1142/S0219498821501759

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.