More on the strongly 1-absorbing primary ideals of commutative rings
Ali Yassine; Mohammad Javad Nikmehr; Reza Nikandish
Czechoslovak Mathematical Journal (2024)
- Issue: 1, page 115-126
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYassine, Ali, Nikmehr, Mohammad Javad, and Nikandish, Reza. "More on the strongly 1-absorbing primary ideals of commutative rings." Czechoslovak Mathematical Journal (2024): 115-126. <http://eudml.org/doc/299240>.
@article{Yassine2024,
abstract = {Let $R$ be a commutative ring with identity. We study the concept of strongly 1-absorbing primary ideals which is a generalization of $n$-ideals and a subclass of $1$-absorbing primary ideals. A proper ideal $I$ of $R$ is called strongly 1-absorbing primary if for all nonunit elements $a,b,c \in R$ such that $abc \in I$, it is either $ab \in I$ or $c \in \sqrt\{0\}$. Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings $R$ over which every semi-primary ideal is strongly 1-absorbing primary, and rings $R$ over which every strongly 1-absorbing primary ideal is prime (or primary) are characterized. Many examples are given to illustrate the obtained results.},
author = {Yassine, Ali, Nikmehr, Mohammad Javad, Nikandish, Reza},
journal = {Czechoslovak Mathematical Journal},
keywords = {strongly 1-absorbing primary ideal; $n$-ideal; primary ideal; semi-primary ideal},
language = {eng},
number = {1},
pages = {115-126},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {More on the strongly 1-absorbing primary ideals of commutative rings},
url = {http://eudml.org/doc/299240},
year = {2024},
}
TY - JOUR
AU - Yassine, Ali
AU - Nikmehr, Mohammad Javad
AU - Nikandish, Reza
TI - More on the strongly 1-absorbing primary ideals of commutative rings
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 115
EP - 126
AB - Let $R$ be a commutative ring with identity. We study the concept of strongly 1-absorbing primary ideals which is a generalization of $n$-ideals and a subclass of $1$-absorbing primary ideals. A proper ideal $I$ of $R$ is called strongly 1-absorbing primary if for all nonunit elements $a,b,c \in R$ such that $abc \in I$, it is either $ab \in I$ or $c \in \sqrt{0}$. Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings $R$ over which every semi-primary ideal is strongly 1-absorbing primary, and rings $R$ over which every strongly 1-absorbing primary ideal is prime (or primary) are characterized. Many examples are given to illustrate the obtained results.
LA - eng
KW - strongly 1-absorbing primary ideal; $n$-ideal; primary ideal; semi-primary ideal
UR - http://eudml.org/doc/299240
ER -
References
top- Almahdi, F. A. A., Bouba, E. M., Koam, A. N. A., 10.4134/BKMS.b190877, Bull. Korean Math. Soc. 57 (2020), 1205-1213. (2020) Zbl1454.13004MR4155008DOI10.4134/BKMS.b190877
- Anderson, D. D., Winders, M., 10.1216/JCA-2009-1-1-3, J. Commut. Algebra 1 (2009), 3-56. (2009) Zbl1194.13002MR2462381DOI10.1216/JCA-2009-1-1-3
- Badawi, A., 10.1017/S0004972700039344, Bull. Aust. Math. Soc. 75 (2007), 417-429. (2007) Zbl1120.13004MR2331019DOI10.1017/S0004972700039344
- Badawi, A., Tekir, U., Yetkin, E., 10.4134/BKMS.2014.51.4.1163, Bull. Korean Math. Soc. 51 (2014), 1163-1173. (2014) Zbl1308.13001MR3248714DOI10.4134/BKMS.2014.51.4.1163
- Badawi, A., Yetkin, E., 10.1142/S021949882050111X, J. Algebra Appl. 19 (2020), Article ID 2050111, 12 pages. (2020) Zbl1440.13008MR4120088DOI10.1142/S021949882050111X
- Beddani, C., Messirdi, W., 10.1142/S0219498816500511, J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. (2016) Zbl1338.13038MR3454713DOI10.1142/S0219498816500511
- R. W. Gilmer, Jr., 10.2140/pjm.1962.12.1273, Pac. J. Math. 12 (1962), 1273-1276. (1962) Zbl0118.27201MR0158898DOI10.2140/pjm.1962.12.1273
- R. W. Gilmer, Jr., 10.1215/S0012-7094-64-03106-0, Duke Math. J. 31 (1964), 73-78. (1964) Zbl0122.29002MR0162816DOI10.1215/S0012-7094-64-03106-0
- R. W. Gilmer, Jr., J. L. Mott, 10.1090/S0002-9947-1965-0171803-X, Trans. Am. Math. Soc. 114 (1965), 40-52. (1965) Zbl0136.02402MR0171803DOI10.1090/S0002-9947-1965-0171803-X
- Krull, W., 10.1007/978-3-642-87033-0, Ergebnisse der Mathematik und ihrer Grenzgebiete 46. Springer, Berlin (1968), German. (1968) Zbl0155.36401MR0229623DOI10.1007/978-3-642-87033-0
- Lam, T. Y., 10.1007/978-1-4757-3987-9, Problem Books in Mathematics. Springer, New York (1995). (1995) Zbl0823.16001MR1323431DOI10.1007/978-1-4757-3987-9
- Leerawat, U., Somsup, C., 10.1080/09720529.2021.1936745, J. Discrete Math. Sci. Cryptography 24 (2021), 1785-1791. (2021) Zbl1487.13028MR4319150DOI10.1080/09720529.2021.1936745
- McCoy, N. H., 10.5948/9781614440086, The Carus Mathematical Monographs 8. Mathematical Association of America, Washington (1948). (1948) Zbl0041.36406MR0026038DOI10.5948/9781614440086
- Nikandish, R., Nikmehr, M. J., Yassine, A., 10.4134/BKMS.b190094, Bull. Korean Math. Soc. 57 (2020), 117-126. (2020) Zbl1440.13018MR4060186DOI10.4134/BKMS.b190094
- Sharp, R. Y., 10.1017/CBO9780511623684, London Mathematical Society Student Texts 51. Cambridge University Press, Cambridge (2000). (2000) Zbl0969.13001MR1817605DOI10.1017/CBO9780511623684
- Tamekkante, M., Bouba, E. M., 10.1142/S0219498819501032, J. Algebra Appl. 18 (2019), Article ID 1950103, 12 pages. (2019) Zbl1412.13005MR3954657DOI10.1142/S0219498819501032
- Tekir, U., Koc, S., Oral, K. H., 10.2298/FIL1710933T, Filomat 31 (2017), 2933-2941. (2017) Zbl1488.13016MR3639382DOI10.2298/FIL1710933T
- Yassine, A., Nikmehr, M. J., Nikandish, R., 10.1142/S0219498821501759, J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages. (2021) Zbl1479.13006MR4326079DOI10.1142/S0219498821501759
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.