Recurrence and mixing recurrence of multiplication operators
Mathematica Bohemica (2024)
- Volume: 149, Issue: 1, page 1-11
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAmouch, Mohamed, and Lakrimi, Hamza. "Recurrence and mixing recurrence of multiplication operators." Mathematica Bohemica 149.1 (2024): 1-11. <http://eudml.org/doc/299245>.
@article{Amouch2024,
abstract = {Let $X$ be a Banach space, $\mathcal \{B\}(X)$ the algebra of bounded linear operators on $X$ and $(J, \Vert \{\cdot \}\Vert _\{J\})$ an admissible Banach ideal of $\mathcal \{B\}(X)$. For $T\in \mathcal \{B\}(X)$, let $L_\{J, T\}$ and $R_\{J, T\}\in \mathcal \{B\}(J)$ denote the left and right multiplication defined by $L_\{J, T\}(A)=TA$ and $R_\{J, T\}(A)=AT$, respectively. In this paper, we study the transmission of some concepts related to recurrent operators between $T\in \mathcal \{B\}(X)$, and their elementary operators $L_\{J, T\}$ and $R_\{J, T\}$. In particular, we give necessary and sufficient conditions for $L_\{J, T\}$ and $R_\{J, T\}$ to be sequentially recurrent. Furthermore, we prove that $L_\{J, T\}$ is recurrent if and only if $T\oplus T$ is recurrent on $X\oplus X$. Moreover, we introduce the notion of a mixing recurrent operator and we show that $L_\{J, T\}$ is mixing recurrent if and only if $T$ is mixing recurrent.},
author = {Amouch, Mohamed, Lakrimi, Hamza},
journal = {Mathematica Bohemica},
keywords = {hypercyclicity; recurrent operator; left multiplication operator; right multiplication operator; tensor product; Banach ideal of operators},
language = {eng},
number = {1},
pages = {1-11},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Recurrence and mixing recurrence of multiplication operators},
url = {http://eudml.org/doc/299245},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Amouch, Mohamed
AU - Lakrimi, Hamza
TI - Recurrence and mixing recurrence of multiplication operators
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 1
SP - 1
EP - 11
AB - Let $X$ be a Banach space, $\mathcal {B}(X)$ the algebra of bounded linear operators on $X$ and $(J, \Vert {\cdot }\Vert _{J})$ an admissible Banach ideal of $\mathcal {B}(X)$. For $T\in \mathcal {B}(X)$, let $L_{J, T}$ and $R_{J, T}\in \mathcal {B}(J)$ denote the left and right multiplication defined by $L_{J, T}(A)=TA$ and $R_{J, T}(A)=AT$, respectively. In this paper, we study the transmission of some concepts related to recurrent operators between $T\in \mathcal {B}(X)$, and their elementary operators $L_{J, T}$ and $R_{J, T}$. In particular, we give necessary and sufficient conditions for $L_{J, T}$ and $R_{J, T}$ to be sequentially recurrent. Furthermore, we prove that $L_{J, T}$ is recurrent if and only if $T\oplus T$ is recurrent on $X\oplus X$. Moreover, we introduce the notion of a mixing recurrent operator and we show that $L_{J, T}$ is mixing recurrent if and only if $T$ is mixing recurrent.
LA - eng
KW - hypercyclicity; recurrent operator; left multiplication operator; right multiplication operator; tensor product; Banach ideal of operators
UR - http://eudml.org/doc/299245
ER -
References
top- Akin, E., 10.1007/978-1-4757-2668-8, Plenum Press, New York (1997). (1997) Zbl0919.54033MR1467479DOI10.1007/978-1-4757-2668-8
- Amouch, M., Lakrimi, H., 10.5269/bspm.52067, Bol. Soc. Parana. Mat. (3) 40 (2022), 11 pages. (2022) MR4417157DOI10.5269/bspm.52067
- Bayart, F., Matheron, É., 10.1017/cbo9780511581113, Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009). (2009) Zbl1187.47001MR2533318DOI10.1017/cbo9780511581113
- Birkhoff, G. D., 10.1007/BF02401754, Acta Math. 43 (1922), 1-119 9999JFM99999 47.0985.03. (1922) MR1555175DOI10.1007/BF02401754
- Bonet, J., Martínez-Giménez, F., Peris, A., 10.1016/j.jmaa.2004.03.073, J. Math. Anal. Appl. 297 (2004), 599-611. (2004) Zbl1062.47011MR2088683DOI10.1016/j.jmaa.2004.03.073
- Bonilla, A., Grosse-Erdmann, K. G., López-Martínez, A., Peris, A., Frequently recurrent operators, Available at https://arxiv.org/abs/2006.11428v1 (2020), 31 pages. (2020) MR4489276
- Chan, K. C., Hypercyclicity of the operator algebra for a separable Hilbert space, J. Oper. Theory 42 (1999), 231-244. (1999) Zbl0997.47058MR1716973
- K. C. Chan, R. D. Taylor, Jr., 10.1007/BF01202099, Integral Equations Oper. Theory 41 (2001), 381-388. (2001) Zbl0995.46014MR1857797DOI10.1007/BF01202099
- Costakis, G., Manoussos, A., Parissis, I., 10.1007/s11785-013-0348-9, Complex Anal. Oper. Theory 8 (2014), 1601-1643. (2014) Zbl1325.47019MR3275437DOI10.1007/s11785-013-0348-9
- Costakis, G., Parissis, I., 10.7146/math.scand.a-15207, Math. Scand. 110 (2012), 251-272. (2012) Zbl1246.47003MR2943720DOI10.7146/math.scand.a-15207
- Furstenberg, H., 10.1515/9781400855162, M. B. Porter Lectures. Princeton University Press, Princeton (1981). (1981) Zbl0459.28023MR0603625DOI10.1515/9781400855162
- Galán, V. J., Martínez-Giménez, F., Oprocha, P., Peris, A., Product recurrence for weighted backward shifts, Appl. Math. Inf. Sci. 9 (2015), 2361-2365. (2015) MR3358706
- Gilmore, C., 10.1007/s11785-018-0774-9, Complex Anal. Oper. Theory 13 (2019), 257-274. (2019) Zbl7032879MR3905592DOI10.1007/s11785-018-0774-9
- Gilmore, C., Saksman, E., Tylli, H.-O., 10.1007/s00020-016-2332-z, Integral Equations Oper. Theory 87 (2017), 139-155. (2017) Zbl6715520MR3609241DOI10.1007/s00020-016-2332-z
- Gohberg, I. C., Krein, M. G., 10.1090/mmono/018, Translations of Mathematical Monographs 18. AMS, Providence (1969). (1969) Zbl0181.13504MR0246142DOI10.1090/mmono/018
- Gottschalk, W. H., Hedlund, G. H., 10.1090/coll/036, Colloquium Publications of the American Mathematical Society 36. AMS, Providence (1955). (1955) Zbl0067.15204MR0074810DOI10.1090/coll/036
- Grivaux, S., Hypercyclic operators, mixing operators, and the bounded steps problem, J. Oper. Theory 54 (2005), 147-168. (2005) Zbl1104.47010MR2168865
- Grosse-Erdmann, K.-G., 10.1090/S0273-0979-99-00788-0, Bull. Am. Math. Soc. 36 (1999), 345-381. (1999) Zbl0933.47003MR1685272DOI10.1090/S0273-0979-99-00788-0
- Grosse-Erdmann, K.-G., Manguillot, A. Peris, 10.1007/978-1-4471-2170-1, Universitext. Springer, Berlin (2011). (2011) Zbl1246.47004MR2919812DOI10.1007/978-1-4471-2170-1
- Gupta, M., Mundayadan, A., 10.1007/s00025-015-0463-1, Result. Math. 70 (2016), 95-107. (2016) Zbl1384.47003MR3534995DOI10.1007/s00025-015-0463-1
- Martínez-Giménez, F., Peris, A., 10.1016/S0021-9045(03)00118-7, J. Approximation Theory 124 (2003), 7-24. (2003) Zbl1062.47014MR2010778DOI10.1016/S0021-9045(03)00118-7
- Petersson, H., 10.1007/s00020-006-1459-8, Integral Equations Oper. Theory 57 (2007), 413-423. (2007) Zbl1141.47005MR2307819DOI10.1007/s00020-006-1459-8
- Poincaré, H., Sur le problème des trois corps et les équations de la dynamique, Acta Math. 13 (1890), 1-270 French 9999JFM99999 22.0907.01. (1890)
- Rolewicz, S., 10.4064/sm-32-1-17-22, Stud. Math. 32 (1969), 17-22. (1969) Zbl0174.44203MR0241956DOI10.4064/sm-32-1-17-22
- Shapiro, J. H., Notes on the dynamics of linear operators, Available at https://users.math.msu.edu/users/shapiro/Pubvit/Downloads/LinDynamics/LynDynamics.html.
- Yin, Z., Wei, Y., 10.1016/j.jmaa.2017.11.046, J. Math. Anal. Appl. 460 (2018), 203-215. (2018) Zbl6824859MR3739900DOI10.1016/j.jmaa.2017.11.046
- Yousefi, B., Rezaei, H., 10.1007/BF03322879, Result. Math. 46 (2004), 174-180. (2004) Zbl1080.47013MR2093472DOI10.1007/BF03322879
- Yousefi, B., Rezaei, H., 10.1007/s10114-007-6601-2, Acta. Math. Sin., Engl. Ser. 24 (2008), 1221-1232. (2008) Zbl1154.47004MR2420891DOI10.1007/s10114-007-6601-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.