Recurrence and mixing recurrence of multiplication operators

Mohamed Amouch; Hamza Lakrimi

Mathematica Bohemica (2024)

  • Issue: 1, page 1-11
  • ISSN: 0862-7959

Abstract

top
Let X be a Banach space, ( X ) the algebra of bounded linear operators on X and ( J , · J ) an admissible Banach ideal of ( X ) . For T ( X ) , let L J , T and R J , T ( J ) denote the left and right multiplication defined by L J , T ( A ) = T A and R J , T ( A ) = A T , respectively. In this paper, we study the transmission of some concepts related to recurrent operators between T ( X ) , and their elementary operators L J , T and R J , T . In particular, we give necessary and sufficient conditions for L J , T and R J , T to be sequentially recurrent. Furthermore, we prove that L J , T is recurrent if and only if T T is recurrent on X X . Moreover, we introduce the notion of a mixing recurrent operator and we show that L J , T is mixing recurrent if and only if T is mixing recurrent.

How to cite

top

Amouch, Mohamed, and Lakrimi, Hamza. "Recurrence and mixing recurrence of multiplication operators." Mathematica Bohemica (2024): 1-11. <http://eudml.org/doc/299245>.

@article{Amouch2024,
abstract = {Let $X$ be a Banach space, $\mathcal \{B\}(X)$ the algebra of bounded linear operators on $X$ and $(J, \Vert \{\cdot \}\Vert _\{J\})$ an admissible Banach ideal of $\mathcal \{B\}(X)$. For $T\in \mathcal \{B\}(X)$, let $L_\{J, T\}$ and $R_\{J, T\}\in \mathcal \{B\}(J)$ denote the left and right multiplication defined by $L_\{J, T\}(A)=TA$ and $R_\{J, T\}(A)=AT$, respectively. In this paper, we study the transmission of some concepts related to recurrent operators between $T\in \mathcal \{B\}(X)$, and their elementary operators $L_\{J, T\}$ and $R_\{J, T\}$. In particular, we give necessary and sufficient conditions for $L_\{J, T\}$ and $R_\{J, T\}$ to be sequentially recurrent. Furthermore, we prove that $L_\{J, T\}$ is recurrent if and only if $T\oplus T$ is recurrent on $X\oplus X$. Moreover, we introduce the notion of a mixing recurrent operator and we show that $L_\{J, T\}$ is mixing recurrent if and only if $T$ is mixing recurrent.},
author = {Amouch, Mohamed, Lakrimi, Hamza},
journal = {Mathematica Bohemica},
keywords = {hypercyclicity; recurrent operator; left multiplication operator; right multiplication operator; tensor product; Banach ideal of operators},
language = {eng},
number = {1},
pages = {1-11},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Recurrence and mixing recurrence of multiplication operators},
url = {http://eudml.org/doc/299245},
year = {2024},
}

TY - JOUR
AU - Amouch, Mohamed
AU - Lakrimi, Hamza
TI - Recurrence and mixing recurrence of multiplication operators
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 1
EP - 11
AB - Let $X$ be a Banach space, $\mathcal {B}(X)$ the algebra of bounded linear operators on $X$ and $(J, \Vert {\cdot }\Vert _{J})$ an admissible Banach ideal of $\mathcal {B}(X)$. For $T\in \mathcal {B}(X)$, let $L_{J, T}$ and $R_{J, T}\in \mathcal {B}(J)$ denote the left and right multiplication defined by $L_{J, T}(A)=TA$ and $R_{J, T}(A)=AT$, respectively. In this paper, we study the transmission of some concepts related to recurrent operators between $T\in \mathcal {B}(X)$, and their elementary operators $L_{J, T}$ and $R_{J, T}$. In particular, we give necessary and sufficient conditions for $L_{J, T}$ and $R_{J, T}$ to be sequentially recurrent. Furthermore, we prove that $L_{J, T}$ is recurrent if and only if $T\oplus T$ is recurrent on $X\oplus X$. Moreover, we introduce the notion of a mixing recurrent operator and we show that $L_{J, T}$ is mixing recurrent if and only if $T$ is mixing recurrent.
LA - eng
KW - hypercyclicity; recurrent operator; left multiplication operator; right multiplication operator; tensor product; Banach ideal of operators
UR - http://eudml.org/doc/299245
ER -

References

top
  1. Akin, E., 10.1007/978-1-4757-2668-8, Plenum Press, New York (1997). (1997) Zbl0919.54033MR1467479DOI10.1007/978-1-4757-2668-8
  2. Amouch, M., Lakrimi, H., 10.5269/bspm.52067, Bol. Soc. Parana. Mat. (3) 40 (2022), 11 pages. (2022) MR4417157DOI10.5269/bspm.52067
  3. Bayart, F., Matheron, É., 10.1017/cbo9780511581113, Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009). (2009) Zbl1187.47001MR2533318DOI10.1017/cbo9780511581113
  4. Birkhoff, G. D., 10.1007/BF02401754, Acta Math. 43 (1922), 1-119 9999JFM99999 47.0985.03. (1922) MR1555175DOI10.1007/BF02401754
  5. Bonet, J., Martínez-Giménez, F., Peris, A., 10.1016/j.jmaa.2004.03.073, J. Math. Anal. Appl. 297 (2004), 599-611. (2004) Zbl1062.47011MR2088683DOI10.1016/j.jmaa.2004.03.073
  6. Bonilla, A., Grosse-Erdmann, K. G., López-Martínez, A., Peris, A., Frequently recurrent operators, Available at https://arxiv.org/abs/2006.11428v1 (2020), 31 pages. (2020) MR4489276
  7. Chan, K. C., Hypercyclicity of the operator algebra for a separable Hilbert space, J. Oper. Theory 42 (1999), 231-244. (1999) Zbl0997.47058MR1716973
  8. K. C. Chan, R. D. Taylor, Jr., 10.1007/BF01202099, Integral Equations Oper. Theory 41 (2001), 381-388. (2001) Zbl0995.46014MR1857797DOI10.1007/BF01202099
  9. Costakis, G., Manoussos, A., Parissis, I., 10.1007/s11785-013-0348-9, Complex Anal. Oper. Theory 8 (2014), 1601-1643. (2014) Zbl1325.47019MR3275437DOI10.1007/s11785-013-0348-9
  10. Costakis, G., Parissis, I., 10.7146/math.scand.a-15207, Math. Scand. 110 (2012), 251-272. (2012) Zbl1246.47003MR2943720DOI10.7146/math.scand.a-15207
  11. Furstenberg, H., 10.1515/9781400855162, M. B. Porter Lectures. Princeton University Press, Princeton (1981). (1981) Zbl0459.28023MR0603625DOI10.1515/9781400855162
  12. Galán, V. J., Martínez-Giménez, F., Oprocha, P., Peris, A., Product recurrence for weighted backward shifts, Appl. Math. Inf. Sci. 9 (2015), 2361-2365. (2015) MR3358706
  13. Gilmore, C., 10.1007/s11785-018-0774-9, Complex Anal. Oper. Theory 13 (2019), 257-274. (2019) Zbl7032879MR3905592DOI10.1007/s11785-018-0774-9
  14. Gilmore, C., Saksman, E., Tylli, H.-O., 10.1007/s00020-016-2332-z, Integral Equations Oper. Theory 87 (2017), 139-155. (2017) Zbl6715520MR3609241DOI10.1007/s00020-016-2332-z
  15. Gohberg, I. C., Krein, M. G., 10.1090/mmono/018, Translations of Mathematical Monographs 18. AMS, Providence (1969). (1969) Zbl0181.13504MR0246142DOI10.1090/mmono/018
  16. Gottschalk, W. H., Hedlund, G. H., 10.1090/coll/036, Colloquium Publications of the American Mathematical Society 36. AMS, Providence (1955). (1955) Zbl0067.15204MR0074810DOI10.1090/coll/036
  17. Grivaux, S., Hypercyclic operators, mixing operators, and the bounded steps problem, J. Oper. Theory 54 (2005), 147-168. (2005) Zbl1104.47010MR2168865
  18. Grosse-Erdmann, K.-G., 10.1090/S0273-0979-99-00788-0, Bull. Am. Math. Soc. 36 (1999), 345-381. (1999) Zbl0933.47003MR1685272DOI10.1090/S0273-0979-99-00788-0
  19. Grosse-Erdmann, K.-G., Manguillot, A. Peris, 10.1007/978-1-4471-2170-1, Universitext. Springer, Berlin (2011). (2011) Zbl1246.47004MR2919812DOI10.1007/978-1-4471-2170-1
  20. Gupta, M., Mundayadan, A., 10.1007/s00025-015-0463-1, Result. Math. 70 (2016), 95-107. (2016) Zbl1384.47003MR3534995DOI10.1007/s00025-015-0463-1
  21. Martínez-Giménez, F., Peris, A., 10.1016/S0021-9045(03)00118-7, J. Approximation Theory 124 (2003), 7-24. (2003) Zbl1062.47014MR2010778DOI10.1016/S0021-9045(03)00118-7
  22. Petersson, H., 10.1007/s00020-006-1459-8, Integral Equations Oper. Theory 57 (2007), 413-423. (2007) Zbl1141.47005MR2307819DOI10.1007/s00020-006-1459-8
  23. Poincaré, H., Sur le problème des trois corps et les équations de la dynamique, Acta Math. 13 (1890), 1-270 French 9999JFM99999 22.0907.01. (1890) 
  24. Rolewicz, S., 10.4064/sm-32-1-17-22, Stud. Math. 32 (1969), 17-22. (1969) Zbl0174.44203MR0241956DOI10.4064/sm-32-1-17-22
  25. Shapiro, J. H., Notes on the dynamics of linear operators, Available at https://users.math.msu.edu/users/shapiro/Pubvit/Downloads/LinDynamics/LynDynamics.html. 
  26. Yin, Z., Wei, Y., 10.1016/j.jmaa.2017.11.046, J. Math. Anal. Appl. 460 (2018), 203-215. (2018) Zbl6824859MR3739900DOI10.1016/j.jmaa.2017.11.046
  27. Yousefi, B., Rezaei, H., 10.1007/BF03322879, Result. Math. 46 (2004), 174-180. (2004) Zbl1080.47013MR2093472DOI10.1007/BF03322879
  28. Yousefi, B., Rezaei, H., 10.1007/s10114-007-6601-2, Acta. Math. Sin., Engl. Ser. 24 (2008), 1221-1232. (2008) Zbl1154.47004MR2420891DOI10.1007/s10114-007-6601-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.