Exploring the impact of post-training rounding in regression models
Applications of Mathematics (2024)
- Issue: 2, page 257-271
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKalina, Jan. "Exploring the impact of post-training rounding in regression models." Applications of Mathematics (2024): 257-271. <http://eudml.org/doc/299255>.
@article{Kalina2024,
abstract = {Post-training rounding, also known as quantization, of estimated parameters stands as a widely adopted technique for mitigating energy consumption and latency in machine learning models. This theoretical endeavor delves into the examination of the impact of rounding estimated parameters in key regression methods within the realms of statistics and machine learning. The proposed approach allows for the perturbation of parameters through an additive error with values within a specified interval. This method is elucidated through its application to linear regression and is subsequently extended to encompass radial basis function networks, multilayer perceptrons, regularization networks, and logistic regression, maintaining a consistent approach throughout.},
author = {Kalina, Jan},
journal = {Applications of Mathematics},
keywords = {supervised learning; trained model; perturbations; effect of rounding; low-precision arithmetic},
language = {eng},
number = {2},
pages = {257-271},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exploring the impact of post-training rounding in regression models},
url = {http://eudml.org/doc/299255},
year = {2024},
}
TY - JOUR
AU - Kalina, Jan
TI - Exploring the impact of post-training rounding in regression models
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 2
SP - 257
EP - 271
AB - Post-training rounding, also known as quantization, of estimated parameters stands as a widely adopted technique for mitigating energy consumption and latency in machine learning models. This theoretical endeavor delves into the examination of the impact of rounding estimated parameters in key regression methods within the realms of statistics and machine learning. The proposed approach allows for the perturbation of parameters through an additive error with values within a specified interval. This method is elucidated through its application to linear regression and is subsequently extended to encompass radial basis function networks, multilayer perceptrons, regularization networks, and logistic regression, maintaining a consistent approach throughout.
LA - eng
KW - supervised learning; trained model; perturbations; effect of rounding; low-precision arithmetic
UR - http://eudml.org/doc/299255
ER -
References
top- Agresti, A., Foundations of Linear and Generalized Linear Models, Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken (2015). (2015) Zbl1309.62001MR3308143
- Blokdyk, G., Artificial Neural Network: A Complete Guide, 5STARCooks, Toronto (2021). (2021)
- Carroll, R. J., Ruppert, D., Stefanski, L. A., Crainiceanu, C. M., 10.1201/9781420010138, Monographs on Statistics and Applied Probability 105. Chapman & Hall/CRC, Boca Raton (2006). (2006) Zbl1119.62063MR2243417DOI10.1201/9781420010138
- Croci, M., Fasi, M., Higham, N. J., Mary, T., Mikaitis, M., 10.1098/rsos.211631, R. Soc. Open Sci. 9 (2022), Article ID 211631, 25 pages. (2022) DOI10.1098/rsos.211631
- Egrioglu, E., Bas, E., Karahasan, O., 10.1007/s41066-022-00345-y, Granul. Comput. 8 (2023), 491-501. (2023) DOI10.1007/s41066-022-00345-y
- Fasi, M., Higham, N. J., Mikaitis, M., Pranesh, S., 10.7717/peerj-cs.330, PeerJ Computer Sci. 7 (2021), Article ID e330, 19 pages. (2021) DOI10.7717/peerj-cs.330
- Gao, F., Li, B., Chen, L., Shang, Z., Wei, X., He, C., 10.1016/j.ultras.2020.106344, Ultrasonics 112 (2021), Article ID 106344, 8 pages. (2021) DOI10.1016/j.ultras.2020.106344
- Greene, W. H., Econometric Analysis, Pearson Education, Harlow (2018). (2018)
- Hastie, T., Tibshirani, R., Wainwright, R., 10.1201/b18401, Monographs on Statistics and Applied Probability 143. CRC Press, Boca Raton (2015). (2015) Zbl1319.68003MR3616141DOI10.1201/b18401
- Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A., Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks, J. Mach. Learn. Res. 22 (2021), Article ID 241, 124 pages. (2021) Zbl07626756MR4329820
- Kalina, J., Tichavský, J., 10.2478/msr-2020-0002, Measurement Sci. Rev. 20 (2020), 6-14. (2020) DOI10.2478/msr-2020-0002
- Kalina, J., Vidnerová, P., Soukup, L., 10.1007/978-981-99-2074-7_125, Handbook of Metrology and Applications Springer, Singapore (2023), 2355-2376. (2023) DOI10.1007/978-981-99-2074-7_125
- Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., Welling, M., 10.48550/arXiv.1810.01875, Available at https://arxiv.org/abs/1810.01875 (2018), 14 pages. (2018) DOI10.48550/arXiv.1810.01875
- Maddox, W. J., Potapczynski, A., Wilson, A. G., Low-precision arithmetic for fast Gaussian processes, Proc. Mach. Learn. Res. 180 (2022), 1306-1316. (2022)
- Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y., Baalen, M. van, Blankevoort, T., 10.48550/arXiv.2106.08295, Available at https://arxiv.org/abs/2106.08295 (2021), 27 pages. (2021) DOI10.48550/arXiv.2106.08295
- Park, J.-H., Kim, K.-M., Lee, S., 10.1145/3524066, ACM Trans. Embedded Comput. Syst. 21 (2022), Article ID 60, 22 pages. (2022) DOI10.1145/3524066
- Pillonetto, G., 10.1016/j.automatica.2018.03.065, Automatica 93 (2018), 321-332. (2018) Zbl1400.93316MR3810919DOI10.1016/j.automatica.2018.03.065
- Riazoshams, H., Midi, H., Ghilagaber, G., 10.1002/9781119010463, John Wiley & Sons, Hoboken (2019). (2019) Zbl1407.62022MR3839600DOI10.1002/9781119010463
- Saleh, A. K. M. E., Picek, J., Kalina, J., 10.1007/s00184-010-0328-2, Metrika 75 (2012), 311-328. (2012) Zbl1239.62081MR2909549DOI10.1007/s00184-010-0328-2
- Seghouane, A.-K., Shokouhi, N., 10.1109/TCYB.2019.2951811, IEEE Trans. Cybernetics 51 (2021), 2847-2856. (2021) DOI10.1109/TCYB.2019.2951811
- Shultz, K. S., Whitney, D., Zickar, M. J., 10.4324/9781315869834, Routledge, New York (2020). (2020) DOI10.4324/9781315869834
- Šíma, J., Vidnerová, P., Mrázek, V., 10.1007/978-3-031-44204-9_16, Artificial Neural Networks and Machine Learning -- ICANN 2023 Lecture Notes in Computer Science 14263. Springer, Cham (2023), 186-198. (2023) DOI10.1007/978-3-031-44204-9_16
- Smucler, E., Yohai, V. J., 10.1016/j.csda.2017.02.002, Comput. Stat. Data Anal. 111 (2017), 116-130. (2017) Zbl1464.62164MR3630222DOI10.1016/j.csda.2017.02.002
- Sze, V., Chen, Y.-H., Yang, T.-J., Emer, J. S., 10.1109/JPROC.2017.2761740, Proc. IEEE 105 2017 (2295-2329). (2017) MR3784727DOI10.1109/JPROC.2017.2761740
- Víšek, J.Á., Consistency of the least weighted squares under heteroscedasticity, Kybernetika 47 (2011), 179-206. (2011) Zbl1220.62064MR2828572
- Wang, N., Choi, J., Brand, D., Chen, C.-Y., Gopalakrishnan, K., 10.5555/3327757.3327866, NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems Curran Associates, New York (2018), 7686-7695. (2018) DOI10.5555/3327757.3327866
- Yan, W. Q., 10.1007/978-981-99-4823-9, Texts in Computer Science. Springer, Singapore (2023). (2023) Zbl7783714MR4660076DOI10.1007/978-981-99-4823-9
- Yu, J., Anitescu, M., 10.1007/s10107-019-01421-z, Math. Program. 185 (2021), 37-76 9999DOI99999 10.1007/s10107-019-01421-z . (2021) Zbl1458.62158MR4201708DOI10.1007/s10107-019-01421-z
- Zhang, R., Wilson, A. G., Sa, C. De, Low-precision stochastic gradient Langevin dynamics, Proc. Mach. Learn. Res. 162 (2022), 26624-26644. (2022)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.