Consistency of the least weighted squares under heteroscedasticity

Jan Ámos Víšek

Kybernetika (2011)

  • Volume: 47, Issue: 2, page 179-206
  • ISSN: 0023-5954

Abstract

top
A robust version of the Ordinary Least Squares accommodating the idea of weighting the order statistics of the squared residuals (rather than directly the squares of residuals) is recalled and its properties are studied. The existence of solution of the corresponding extremal problem and the consistency under heteroscedasticity is proved.

How to cite

top

Víšek, Jan Ámos. "Consistency of the least weighted squares under heteroscedasticity." Kybernetika 47.2 (2011): 179-206. <http://eudml.org/doc/196601>.

@article{Víšek2011,
abstract = {A robust version of the Ordinary Least Squares accommodating the idea of weighting the order statistics of the squared residuals (rather than directly the squares of residuals) is recalled and its properties are studied. The existence of solution of the corresponding extremal problem and the consistency under heteroscedasticity is proved.},
author = {Víšek, Jan Ámos},
journal = {Kybernetika},
keywords = {robustness; weighting the order statistics of the squared residuals; consistency of the least weighted squares under heteroscedasticity; robustness; weighting order statistics of squared residuals},
language = {eng},
number = {2},
pages = {179-206},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Consistency of the least weighted squares under heteroscedasticity},
url = {http://eudml.org/doc/196601},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Víšek, Jan Ámos
TI - Consistency of the least weighted squares under heteroscedasticity
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 2
SP - 179
EP - 206
AB - A robust version of the Ordinary Least Squares accommodating the idea of weighting the order statistics of the squared residuals (rather than directly the squares of residuals) is recalled and its properties are studied. The existence of solution of the corresponding extremal problem and the consistency under heteroscedasticity is proved.
LA - eng
KW - robustness; weighting the order statistics of the squared residuals; consistency of the least weighted squares under heteroscedasticity; robustness; weighting order statistics of squared residuals
UR - http://eudml.org/doc/196601
ER -

References

top
  1. Bickel, P. J., 10.1080/01621459.1975.10479884, J. Amer. Statist. Assoc. 70 (1975), 428–433. (1975) Zbl0322.62038MR0386168DOI10.1080/01621459.1975.10479884
  2. Breiman, L., Probability, Addison-Wesley Publishing Company, London 1968. (1968) Zbl0174.48801MR0229267
  3. Croux, C., Rousseeuw, P. J., 10.1080/03610929208830889, Commun. Statist. Theory Methods 21 (1992), 1935–1951. (1992) Zbl0774.62035MR1173503DOI10.1080/03610929208830889
  4. Hájek, J., Šidák, Z., Theory of Rank Test, Academic Press, New York 1967. (1967) MR0229351
  5. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A., Robust Statistics – The Approach Based on Influence Functions, Wiley, New York 1986. (1986) Zbl0593.62027MR0829458
  6. Hettmansperger, T. P., Sheather, S. J., A cautionary note on the method of Least Median Squares, Amer. Statist. 46 (1992), 79–83. (1992) MR1165565
  7. Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., Lee, T. C., The Theory and Practice of Econometrics, Second edition. Wiley, New York 1985. (1985) MR1007139
  8. Jurečková, J., Sen, P. K., Regression rank scores scale statistics and studentization in linear models, In: Proc. Fifth Prague Symposium on Asymptotic Statistics, Physica Verlag 1993,  111–121. (1993) MR1311932
  9. Koul, H. L., Weighted Empirical Processes in Dynamic Nonlinear Models, Lecture Notes in Statist. 166, Springer Verlag, New York 2002. (2002) Zbl1007.62047MR1911855
  10. Mašíček, J., Consistency of the least weighted squares estimator, In: Statistics for Industry and Technology, Birkha̋ser Verlag Basel 2004 ,  183–194. (2004) 
  11. Rousseeuw, P. J., 10.1080/01621459.1984.10477105, J. Amer. Statist. Assoc. 79 (1984), 871–880. (1984) MR0770281DOI10.1080/01621459.1984.10477105
  12. Rousseeuw, P. J., Leroy, A. M., Robust Regression and Outlier Detection, Wiley, New York 1987. (1987) Zbl0711.62030MR0914792
  13. Štepán, J., Teorie pravděpodobnosti, Academia, Praha 1987. (1987) 
  14. Tucker, H., A Graduate Course in Probability, Academic Press, London 1967. (1967) MR0221541
  15. Vaart, A. W. van der, Welner, J. A., Weak Convergence and Empirical Processes, Second edition. Springer-Verlag, New York 2000. (2000) 
  16. Víšek, J. Á., A cautionary note on the method of the Least Median of Squares reconsidered, In: Trans. Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes 1994,  254–259. (1994) 
  17. Víšek, J. Á., 10.1007/BF00050849, Ann. Inst. Statist. Math. 48 (1996), 469–495. (1996) MR1424776DOI10.1007/BF00050849
  18. Víšek, J. Á., On high breakdown point estimation, Computational Statistics 11 (1996), 137–146. (1996) MR1394545
  19. Víšek, J. Á., Regression with high breakdown point, In: Robust 2000 (J Antoch and G. Dohnal, eds.), Union of Czech Math. and Phys. 2001,  324–356. (2000) 
  20. Víšek, J. Á., The least weighted squares I, The asymptotic linearity of normal equations. Bull. Czech Econometr. Soc. 9 (2002), 15, 31–58, 2002 (2002) 
  21. Víšek, J. Á., The least weighted squares II, Consistency and asymptotic normality. Bull. Czech Econom. Soc. 9 (2002), 16, 1–28. (2002) 
  22. Víšek, J. Á., 10.1023/A:1022465701229, Ann. Inst. Statist. Math. 54 (2002), 261–290. (2002) Zbl1013.62072MR1910173DOI10.1023/A:1022465701229
  23. Víšek, J. Á., The least trimmed squares, Sensitivity study. In: Proc. Prague Stochastics 2006, (M. Hušková and M. Janžura, eds.) Matfyzpress 2006,  728–738. (2006) Zbl1248.62035
  24. Víšek, J. Á., Robust error-term-scale estimate, IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková, 7 (2010), 254–267. (2010) MR2808385
  25. Víšek, J. Á., Empirical distribution function under heteroscedasticity, To appear in Statistics. http://www.informaworld.com/smpp/content?db=all&content=a922317072. MR2832181

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.