Extremal inverse eigenvalue problem for matrices described by a connected unicyclic graph
Bijoya Bardhan; Mausumi Sen; Debashish Sharma
Applications of Mathematics (2024)
- Issue: 2, page 273-286
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBardhan, Bijoya, Sen, Mausumi, and Sharma, Debashish. "Extremal inverse eigenvalue problem for matrices described by a connected unicyclic graph." Applications of Mathematics (2024): 273-286. <http://eudml.org/doc/299256>.
@article{Bardhan2024,
abstract = {In this paper, we deal with the construction of symmetric matrix whose corresponding graph is connected and unicyclic using some pre-assigned spectral data. Spectral data for the problem consist of the smallest and the largest eigenvalues of each leading principal submatrices. Inverse eigenvalue problem (IEP) with this set of spectral data is generally known as the extremal IEP. We use a standard scheme of labeling the vertices of the graph, which helps in getting a simple relation between the characteristic polynomials of each leading principal submatrix. Sufficient condition for the existence of the solution is obtained. The proof is constructive, hence provides an algorithmic procedure for finding the required matrix. Furthermore, we provide the condition under which the same problem is solvable when two particular entries of the required matrix satisfy a linear relation.},
author = {Bardhan, Bijoya, Sen, Mausumi, Sharma, Debashish},
journal = {Applications of Mathematics},
keywords = {inverse eigenvalue problem; unicyclic graph; leading principal submatrices},
language = {eng},
number = {2},
pages = {273-286},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extremal inverse eigenvalue problem for matrices described by a connected unicyclic graph},
url = {http://eudml.org/doc/299256},
year = {2024},
}
TY - JOUR
AU - Bardhan, Bijoya
AU - Sen, Mausumi
AU - Sharma, Debashish
TI - Extremal inverse eigenvalue problem for matrices described by a connected unicyclic graph
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 2
SP - 273
EP - 286
AB - In this paper, we deal with the construction of symmetric matrix whose corresponding graph is connected and unicyclic using some pre-assigned spectral data. Spectral data for the problem consist of the smallest and the largest eigenvalues of each leading principal submatrices. Inverse eigenvalue problem (IEP) with this set of spectral data is generally known as the extremal IEP. We use a standard scheme of labeling the vertices of the graph, which helps in getting a simple relation between the characteristic polynomials of each leading principal submatrix. Sufficient condition for the existence of the solution is obtained. The proof is constructive, hence provides an algorithmic procedure for finding the required matrix. Furthermore, we provide the condition under which the same problem is solvable when two particular entries of the required matrix satisfy a linear relation.
LA - eng
KW - inverse eigenvalue problem; unicyclic graph; leading principal submatrices
UR - http://eudml.org/doc/299256
ER -
References
top- Zarch, M. Babaei, Fazeli, S. A. Shahzadeh, 10.1007/s40995-019-00737-x, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 2531-2539. (2019) MR4008794DOI10.1007/s40995-019-00737-x
- Zarch, M. Babaei, Fazeli, S. A. Shahzadeh, Karbassi, S. M., Inverse eigenvalue problem for matrices whose graph is a banana tree, J. Algorithms Comput. 50 (2018), 89-101. (2018)
- Chen, W. Y., Li, X., Wang, C., Zhang, X., 10.1016/j.endm.2004.03.018, Workshop on Graphs and Combinatorial Optimization Electronic Notes Discrete Mathematics 17. Elsevier, Amsterdam (2004), 93-98. (2004) Zbl1152.05373MR2159881DOI10.1016/j.endm.2004.03.018
- Chu, M. T., 10.1137/S00361445963039, SIAM Rev. 40 (1998), 1-39. (1998) Zbl0915.15008MR1612561DOI10.1137/S00361445963039
- Cvetković, D., Applications of graph spectra: An introduction to the literature, Applications of Graph Spectra Zbornik Radova 13. Matematički Institut SANU, Beograd (2009), 7-31. (2009) Zbl1265.05002MR2543252
- Gladwell, G. M. L., 10.1115/1.3149517, Appl. Mech. Rev. 39 (1986), 1013-1018. (1986) Zbl0588.73110MR0874749DOI10.1115/1.3149517
- Hadji, M., Chau, M., 10.1109/CSE-EUC-DCABES.2016.245, IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering (DCABES) IEEE, Paris (2016), 586-593. (2016) DOI10.1109/CSE-EUC-DCABES.2016.245
- Haoer, R. S., Atan, K. A., Said, M. R., Khalaf, A. M., Hasni, R., 10.1166/jctn.2016.6055, J. Comput. Theor. Nanosci. 13 (2016), 8870-8873. (2016) DOI10.1166/jctn.2016.6055
- Horn, R. A., Johnson, C. R., 10.1017/CBO9780511810817, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290DOI10.1017/CBO9780511810817
- Johnson, C. R., Duarte, A. Leal, Saiago, C. M., 10.1016/S0024-3795(03)00582-2, Linear Algebra Appl. 373 (2003), 311-330. (2003) Zbl1035.15010MR2022294DOI10.1016/S0024-3795(03)00582-2
- Li, N., 10.1016/S0024-3795(96)00639-8, Linear Algebra Appl. 266 (1997), 143-152. (1997) Zbl0901.15003MR1473198DOI10.1016/S0024-3795(96)00639-8
- Li, X., Magnant, C., Qin, Z., 10.1007/978-3-319-89617-5, SpringerBriefs in Mathematics. Springer, Cham (2018). (2018) Zbl1475.05002MR3793127DOI10.1007/978-3-319-89617-5
- Li, X., Wang, J., 10.1016/j.laa.2020.03.007, Linear Algebra Appl. 596 (2020), 71-81. (2020) Zbl1435.05130MR4075597DOI10.1016/j.laa.2020.03.007
- Nylen, P., Uhlig, F., 10.1016/S0024-3795(96)00316-3, Linear Algebra Appl. 254 (1997), 409-425. (1997) Zbl0879.15007MR1436689DOI10.1016/S0024-3795(96)00316-3
- Peng, J., Hu, X.-Y., Zhang, L., 10.1016/j.laa.2005.11.017, Linear Algebra Appl. 416 (2006), 336-347. (2006) Zbl1097.65053MR2242733DOI10.1016/j.laa.2005.11.017
- Pickmann, H., Egaña, J., Soto, R. L., 10.1016/j.laa.2007.07.020, Linear Algebra Appl. 427 (2007), 256-271. (2007) Zbl1144.65026MR2351358DOI10.1016/j.laa.2007.07.020
- Pickmann, H., Egaña, J. C., Soto, R. L., 10.13001/1081-3810.1339, Electron. J. Linear Algebra 18 (2009), 700-718. (2009) Zbl1189.65072MR2565881DOI10.13001/1081-3810.1339
- Pickmann-Soto, H., Arela-Pérez, S., Nina, H., Valero, E., 10.1016/j.laa.2020.01.019, Linear Algebra Appl. 592 (2020), 93-112. (2020) Zbl1436.15019MR4056072DOI10.1016/j.laa.2020.01.019
- Sharma, D., Sarma, B. K., 10.1080/27690911.2022.2041631, Appl. Math. Sci. Eng. 30 (2022), 192-209. (2022) MR4451929DOI10.1080/27690911.2022.2041631
- Sharma, D., Sen, M., 10.3390/math4010012, Mathematics 4 (2016), Article ID 12, 11 pages. (2016) Zbl1382.65109DOI10.3390/math4010012
- Sharma, D., Sen, M., 10.1515/spma-2018-0008, Spec. Matrices 6 (2018), 77-92. (2018) Zbl1391.15098MR3764333DOI10.1515/spma-2018-0008
- Sharma, D., Sen, M., 10.1016/j.laa.2021.03.021, Linear Algebra Appl. 621 (2021), 334-344. (2021) Zbl1462.05243MR4235267DOI10.1016/j.laa.2021.03.021
- Wei, Y., Dai, H., 10.1016/j.cam.2015.12.038, J. Comput. Appl. Math. 300 (2016), 172-182. (2016) Zbl1382.74129MR3460292DOI10.1016/j.cam.2015.12.038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.