Identification of source term in a nonlinear degenerate parabolic equation with memory

Soufiane Abid; Khalid Atifi; El-Hassan Essoufi; Abderrahim Zafrar

Applications of Mathematics (2024)

  • Volume: 69, Issue: 2, page 209-232
  • ISSN: 0862-7940

Abstract

top
In this work, we consider an inverse backward problem for a nonlinear parabolic equation of the Burgers' type with a memory term from final data. To this aim, we first establish the well-posedness of the direct problem. On the basis of the optimal control framework, the existence and necessary condition of the minimizer for the cost functional are established. The global uniqueness and stability of the minimizer are deduced from the necessary condition. Numerical experiments demonstrate the effectiveness of this approach.

How to cite

top

Abid, Soufiane, et al. "Identification of source term in a nonlinear degenerate parabolic equation with memory." Applications of Mathematics 69.2 (2024): 209-232. <http://eudml.org/doc/299259>.

@article{Abid2024,
abstract = {In this work, we consider an inverse backward problem for a nonlinear parabolic equation of the Burgers' type with a memory term from final data. To this aim, we first establish the well-posedness of the direct problem. On the basis of the optimal control framework, the existence and necessary condition of the minimizer for the cost functional are established. The global uniqueness and stability of the minimizer are deduced from the necessary condition. Numerical experiments demonstrate the effectiveness of this approach.},
author = {Abid, Soufiane, Atifi, Khalid, Essoufi, El-Hassan, Zafrar, Abderrahim},
journal = {Applications of Mathematics},
keywords = {inverse source problem; nonlinear parabolic equation; memory term; optimal control},
language = {eng},
number = {2},
pages = {209-232},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Identification of source term in a nonlinear degenerate parabolic equation with memory},
url = {http://eudml.org/doc/299259},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Abid, Soufiane
AU - Atifi, Khalid
AU - Essoufi, El-Hassan
AU - Zafrar, Abderrahim
TI - Identification of source term in a nonlinear degenerate parabolic equation with memory
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 209
EP - 232
AB - In this work, we consider an inverse backward problem for a nonlinear parabolic equation of the Burgers' type with a memory term from final data. To this aim, we first establish the well-posedness of the direct problem. On the basis of the optimal control framework, the existence and necessary condition of the minimizer for the cost functional are established. The global uniqueness and stability of the minimizer are deduced from the necessary condition. Numerical experiments demonstrate the effectiveness of this approach.
LA - eng
KW - inverse source problem; nonlinear parabolic equation; memory term; optimal control
UR - http://eudml.org/doc/299259
ER -

References

top
  1. Allal, B., Fragnelli, G., 10.1002/mma.7342, Math. Methods Appl. Sci. 44 (2021), 9163-9190. (2021) Zbl1470.35205MR4279843DOI10.1002/mma.7342
  2. Belov, Y. Y., Korshun, K. V., An identification problem of source function in the Burgers-type equation, J. Sib. Fed. Univ., Math. Phys. 5 (2012), 497-506 Russian. (2012) Zbl07324917
  3. Biazar, J., Ghazvini, H., 10.1016/j.nonrwa.2008.07.002, Nonlinear Anal., Real World Appl. 10 (2009), 2633-2640. (2009) Zbl1173.35395MR2523226DOI10.1016/j.nonrwa.2008.07.002
  4. Biot, M. A., Mechanics of Incremental Deformations, John Wiley & Sons, New York (1965). (1965) MR0185873
  5. Biskamp, D., 10.1088/0029-5515/13/5/010, Nuclear Fusion 13 (1973), Article ID 719. (1973) DOI10.1088/0029-5515/13/5/010
  6. Burgers, J. M., 10.1016/S0065-2156(08)70100-5, Advances in Applied Mechanics. Vol. 1 Academic Press, New York (1948), 171-199. (1948) Zbl0038.36807MR0027195DOI10.1016/S0065-2156(08)70100-5
  7. Campanella, B., Legnaioli, S., Pagnotta, S., Poggialini, F., Palleschi, V., 10.3390/atoms7020057, Atoms 7 (2019), Article ID 57, 14 pages. (2019) DOI10.3390/atoms7020057
  8. Carneiro, F. L., Ulhoa, S. C., Maluf, J. W., Rocha-Neto, J. F. da, 10.1140/epjc/s10052-021-08862-x, Eur. Phys. J. C 81 (2021), Article ID 67, 9 pages. (2021) MR3847069DOI10.1140/epjc/s10052-021-08862-x
  9. Dağ, I., Irk, D., Saka, B., 10.1016/j.amc.2004.01.028, Appl. Math. Comput. 163 (2005), 199-211. (2005) Zbl1060.65652MR2115588DOI10.1016/j.amc.2004.01.028
  10. Dussault, J.-P., 10.1051/ro:2008007, RAIRO, Oper. Res. 42 (2008), 141-155 French. (2008) Zbl1153.65027MR2431397DOI10.1051/ro:2008007
  11. Grasselli, M., Lorenzi, A., Abstract nonlinear Volterra integrodifferential equations with nonsmooth kernels, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 2 (1991), 43-53. (1991) Zbl0819.45006MR1120122
  12. Inc, M., 10.1016/j.jmaa.2008.04.007, J. Math. Anal. Appl. 345 (2008), 476-484. (2008) Zbl1146.35304MR2422665DOI10.1016/j.jmaa.2008.04.007
  13. Jeffrey, A., Taniuti, T., 10.1016/s0076-5392(08)x6141-7, Mathematics in Science and Engineering 9. Academic Press, New York (1964). (1964) Zbl0117.21103MR0167137DOI10.1016/s0076-5392(08)x6141-7
  14. Jiwari, R., 10.1016/j.cpc.2012.06.009, Comput. Phys. Commun. 183 (2012), 2413-2423. (2012) Zbl1302.35337MR2956605DOI10.1016/j.cpc.2012.06.009
  15. Jiwari, R., 10.1016/j.cpc.2014.11.004, Comput. Phys. Commun. 188 (2015), 59-67. (2015) Zbl1344.65082MR3294321DOI10.1016/j.cpc.2014.11.004
  16. Leonenko, N. N., Woyczynski, W. A., 10.1016/S0378-3758(98)00239-0, J. Stat. Plann. Inference 80 (1999), 1-13. (1999) Zbl0986.62077MR1713800DOI10.1016/S0378-3758(98)00239-0
  17. Leonenko, N. N., Woyczynski, W. A., Parameter identification for stochastic Burgers' flows via parabolic rescaling, Probab. Math. Stat. 21 (2001), 1-55. (2001) Zbl1075.62627MR1869720
  18. Lions, J. L., Magenes, E., 10.1007/978-3-642-65161-8, Die Grundlehren der mathematischen Wissenschaften 181. Springer, Berlin (1972). (1972) Zbl0223.35039MR0350177DOI10.1007/978-3-642-65161-8
  19. Popel, S. I., Yu, M. Y., Tsytovich, V. N., 10.1063/1.872048, Phys. Plasmas 3 (1996), 4313-4315. (1996) DOI10.1063/1.872048
  20. Simon, J., 10.1007/BF01762360, Ann. Mat. Pura Appl., IV. Ser. 146 (1986), 65-96. (1986) Zbl0629.46031MR0916688DOI10.1007/BF01762360
  21. Wang, Z., Vanden-Broeck, J.-M., Milewski, P. A., 10.1093/imamat/hxt020, IMA J. Appl. Math. 78 (2013), 750-761. (2013) Zbl1282.76080MR3085313DOI10.1093/imamat/hxt020
  22. Zakharov, V. E., Musher, S. L., Rubenchik, A. M., 10.1016/0370-1573(85)90040-7, Phys. Reports 129 (1985), 285-366. (1985) MR0824169DOI10.1016/0370-1573(85)90040-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.