On Lie semiheaps and ternary principal bundles
Archivum Mathematicum (2024)
- Volume: 060, Issue: 2, page 101-124
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBruce, Andrew James. "On Lie semiheaps and ternary principal bundles." Archivum Mathematicum 060.2 (2024): 101-124. <http://eudml.org/doc/299263>.
@article{Bruce2024,
abstract = {We introduce the notion of a Lie semiheap as a smooth manifold equipped with a para-associative ternary product. For a particular class of Lie semiheaps we establish the existence of left-invariant vector fields. Furthermore, we show how such manifolds are related to Lie groups and establish the analogue of principal bundles in this ternary setting. In particular, we generalise the well-known ‘heapification’ functor to the ambience of Lie groups and principal bundles.},
author = {Bruce, Andrew James},
journal = {Archivum Mathematicum},
keywords = {heaps; semiheaps; principal bundles; group actions; generalised associativity},
language = {eng},
number = {2},
pages = {101-124},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On Lie semiheaps and ternary principal bundles},
url = {http://eudml.org/doc/299263},
volume = {060},
year = {2024},
}
TY - JOUR
AU - Bruce, Andrew James
TI - On Lie semiheaps and ternary principal bundles
JO - Archivum Mathematicum
PY - 2024
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 060
IS - 2
SP - 101
EP - 124
AB - We introduce the notion of a Lie semiheap as a smooth manifold equipped with a para-associative ternary product. For a particular class of Lie semiheaps we establish the existence of left-invariant vector fields. Furthermore, we show how such manifolds are related to Lie groups and establish the analogue of principal bundles in this ternary setting. In particular, we generalise the well-known ‘heapification’ functor to the ambience of Lie groups and principal bundles.
LA - eng
KW - heaps; semiheaps; principal bundles; group actions; generalised associativity
UR - http://eudml.org/doc/299263
ER -
References
top- Baer, R., Zur Einführung des Scharbegriffs, J. Reine Angew. Math. 160 (1929), 199–207. (1929) MR1581184
- Borowiec, A., Dudek, W.A., Duplij, S., Basic concepts of ternary Hopf algebras, J. Kharkov National Univ., ser. Nuclei, Particles and Fields, vol. 529 3 (15) (2001), 21–29. (2001)
- Breaz, S., Brzeziński, T., Rybołowicz, B., Saracco, P., 10.1007/s10231-023-01369-0, Ann. Mat. Pur. Appl. 203 (2024), 403–405. (2024) MR4685735DOI10.1007/s10231-023-01369-0
- Bruce, A.J., 10.3390/universe8010056, Universe 8 (1) (2022), 56. (2022) DOI10.3390/universe8010056
- Brzeziński, T., Towards semi-trusses, Rev. Roumaine Math. Pures Appl. 63 (2) (2018), 75–89. (2018) MR3812011
- Brzeziński, T., 10.1090/tran/7705, Trans. Amer. Math. Soc. 372 (6) (2019), 4149–4176. (2019) MR4009388DOI10.1090/tran/7705
- Brzeziński, T., 10.1016/j.jpaa.2019.106258, J. Pure Appl. Algebra 224 (6) (2020), 39 pp., 106258. (2020) MR4048518DOI10.1016/j.jpaa.2019.106258
- Brzeziński, T., Lie trusses and heaps of Lie affebras, PoS 406 (2022), 12 pp., 307. (2022)
- Brzeziński, T., 10.1017/S0013091523000275, Proc. Edinb. Math. Soc. 66 (2) (2023), 548–556. (2023) MR4618086DOI10.1017/S0013091523000275
- Brzeziński, T., Rybołowicz, B., 10.1007/s10468-020-10008-8, Algebr. Represent. Theory 25 (1) (2022), 1–23. (2022) MR4368576DOI10.1007/s10468-020-10008-8
- Brzeziński, T., Wisbauer, R., Corings and comodules, London Math. Soc. Lecture Note Ser., vol. 309, Cambridge University Press, Cambridge, 2003, pp. xii+476 pp. (2003) MR2012570
- Grabowska, K., Grabowski, J., Urbański, P., 10.1023/A:1024457728027, Ann. Global Anal.Geom. 24 (2003), 101–130. (2003) MR1990111DOI10.1023/A:1024457728027
- Grabowski, J., An introduction to loopoids, Comment. Math. Univ. Carolin. 57 (2016), 515–526. (2016) MR3583303
- Grabowski, J., Z., Ravanpak, 10.1016/j.difgeo.2022.101887, Differential Geom. Appl. 82 (2022), 32 pp., Paper No. 101887. (2022) MR4404504DOI10.1016/j.difgeo.2022.101887
- Hollings, C.D., Lawson, M.V., Wagner’s theory of generalised heaps, Springer, Cham, 2017, xv+189 pp., ISBN: 978-3-319-63620-7. (2017) MR3729305
- Kerner, R., 10.1142/S0219887808003326, Int. J. Geom. Methods Mod. Phys. 5 (2008), 1265–1294. (2008) MR2484553DOI10.1142/S0219887808003326
- Kerner, R., Ternary generalizations of graded algebras with some physical applications, Rev. Roumaine Math. Pures Appl 63 (2018), 107–141. (2018) MR3812013
- Kolář, I., Michor, P.W., Slovák, J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993. (1993) Zbl0782.53013MR1202431
- Konstantinova, L.I., Semiheap bundles, Saratov Gos. Univ. Saratov No. 4 (1978), 46–54. (1978) MR0538067
- Kontsevich, M., 10.1023/A:1007555725247, Lett. Math. Phys. 48 (1999), 35–72. (1999) MR1718044DOI10.1023/A:1007555725247
- Kosmann-Schwarzbach, Y., Multiplicativity, from Lie groups to generalized geometry, Banach Center Publ. 110 (2016), 131–166. (2016) MR3642395
- Mac Lane, S., Categories for the working mathematician, Grad. Texts in Math., vol. 5, New York, NY: Springer, 2nd ed., 1998, pp. xii+314 pp. (1998) MR1712872
- Nakahara, M., Geometry, topology and physics, 2nd ed., Graduate Stud. Ser. Phys. Bristol: Institute of Physics (IOP), 2003, xxii+ 573 pp. (2003) MR2001829
- Prüfer, H., Theorie der Abelschen Gruppen, Math. Z. 20 (1) (1924), 165–171. (1924) MR1544670
- Saito, M., E., Zappala, Braided Frobenius algebras from certain Hopf algebras, J. Algebra Appl. 22 (1) (2023), 23 pp., Paper No. 2350012. (2023) MR4526173
- Škoda, Z., Quantum heaps, cops and heapy categories, Math. Commun. 12 (1) (2007), 1–9. (2007) MR2420028
- Trèves, F., Topological Vector Spaces, Distributions and Kernels, Dover Publications, Inc., Mineola, NY, 2006, xvi+565 pp., ISBN: 0-486-45352-9. (2006) MR2296978
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.