Multi-type synchronization of impulsive coupled oscillators via topology degree

Yingjie Bi; Zhidan Cai; Shuai Wang

Applications of Mathematics (2024)

  • Volume: 69, Issue: 2, page 185-207
  • ISSN: 0862-7940

Abstract

top
The existence of synchronization is an important issue in complex dynamical networks. In this paper, we study the synchronization of impulsive coupled oscillator networks with the aid of rotating periodic solutions of impulsive system. The type of synchronization is closely related to the rotating matrix, which gives an insight for finding various types of synchronization in a united way. We transform the synchronization of impulsive coupled oscillators into the existence of rotating periodic solutions in a relevant impulsive system. Some existence theorems about rotating periodic solutions for a non-homogeneous linear impulsive system and a nonlinear perturbation system are established by topology degree theory. Finally, we give two examples to show synchronization behaviors in impulsive coupled oscillator networks.

How to cite

top

Bi, Yingjie, Cai, Zhidan, and Wang, Shuai. "Multi-type synchronization of impulsive coupled oscillators via topology degree." Applications of Mathematics 69.2 (2024): 185-207. <http://eudml.org/doc/299280>.

@article{Bi2024,
abstract = {The existence of synchronization is an important issue in complex dynamical networks. In this paper, we study the synchronization of impulsive coupled oscillator networks with the aid of rotating periodic solutions of impulsive system. The type of synchronization is closely related to the rotating matrix, which gives an insight for finding various types of synchronization in a united way. We transform the synchronization of impulsive coupled oscillators into the existence of rotating periodic solutions in a relevant impulsive system. Some existence theorems about rotating periodic solutions for a non-homogeneous linear impulsive system and a nonlinear perturbation system are established by topology degree theory. Finally, we give two examples to show synchronization behaviors in impulsive coupled oscillator networks.},
author = {Bi, Yingjie, Cai, Zhidan, Wang, Shuai},
journal = {Applications of Mathematics},
keywords = {synchronization; impulsive coupled oscillator; rotating periodic solution; impulsive system},
language = {eng},
number = {2},
pages = {185-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multi-type synchronization of impulsive coupled oscillators via topology degree},
url = {http://eudml.org/doc/299280},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Bi, Yingjie
AU - Cai, Zhidan
AU - Wang, Shuai
TI - Multi-type synchronization of impulsive coupled oscillators via topology degree
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 185
EP - 207
AB - The existence of synchronization is an important issue in complex dynamical networks. In this paper, we study the synchronization of impulsive coupled oscillator networks with the aid of rotating periodic solutions of impulsive system. The type of synchronization is closely related to the rotating matrix, which gives an insight for finding various types of synchronization in a united way. We transform the synchronization of impulsive coupled oscillators into the existence of rotating periodic solutions in a relevant impulsive system. Some existence theorems about rotating periodic solutions for a non-homogeneous linear impulsive system and a nonlinear perturbation system are established by topology degree theory. Finally, we give two examples to show synchronization behaviors in impulsive coupled oscillator networks.
LA - eng
KW - synchronization; impulsive coupled oscillator; rotating periodic solution; impulsive system
UR - http://eudml.org/doc/299280
ER -

References

top
  1. Bainov, D., Simeonov, P., 10.1201/9780203751206, Pitman Monographs and Surveys in Pure and Applied Mathematics 66. Longman Scientific & Technical, New York (1993). (1993) Zbl0815.34001MR1266625DOI10.1201/9780203751206
  2. Barkley, D., 10.1103/PhysRevLett.72.164, Phys. Rev. Lett. 72 (1994), 164-167. (1994) DOI10.1103/PhysRevLett.72.164
  3. Cui, X., Li, H.-L., Zhang, L., Hu, C., Bao, H., 10.1016/j.chaos.2023.113772, Chaos Solitons Fractals 174 (2023), Article ID 113772, 8 pages. (2023) MR4612680DOI10.1016/j.chaos.2023.113772
  4. Dong, X., Yang, X., 10.11948/20210309, J. Appl. Anal. Comput. 12 (2022), 754-769. (2022) MR4398690DOI10.11948/20210309
  5. Eilertsen, J., Schnell, S., Walcher, S., 10.1007/s11538-023-01150-7, Bull. Math. Biol. 85 (2023), Article ID 48, 75 pages. (2023) Zbl1519.92362MR4581145DOI10.1007/s11538-023-01150-7
  6. Fečkan, M., Liu, K., Wang, J. R., 10.3934/eect.2021006, Evol. Equ. Control Theory 11 (2022), 415-437. (2022) Zbl1483.34082MR4376330DOI10.3934/eect.2021006
  7. Fokken, E., Göttlich, S., Kolb, O., 10.1007/s10665-019-10026-6, J. Eng. Math. 119 (2019), 217-239. (2019) Zbl1437.35481MR4039640DOI10.1007/s10665-019-10026-6
  8. Huygens, C., Horologium Oscillatorium: Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae, F. Muguet, Paris (1673), Latin. (1673) 
  9. Jiang, H., Liu, Y., Zhang, L., Yu, J., 10.1016/j.cnsns.2016.02.033, Commun. Nonlinear Sci. Numer. Simul. 39 (2016), 199-208. (2016) Zbl1510.34068MR3498480DOI10.1016/j.cnsns.2016.02.033
  10. Karimaghaee, P., Heydari, Z. R., 10.1007/s40435-020-00628-9, Int. J. Dyn. Control 9 (2021), 211-224. (2021) MR4215925DOI10.1007/s40435-020-00628-9
  11. Li, H.-J., Xu, W., Song, S., Wang, W.-X., Perc, M., 10.1016/j.chaos.2021.111294, Chaos Solitons Fractals 151 (2021), Article ID 111294, 7 pages. (2021) Zbl1498.68022MR4296951DOI10.1016/j.chaos.2021.111294
  12. Liu, G., Li, Y., Yang, X., 10.1016/j.jde.2023.06.001, J. Differ. Equations 369 (2023), 229-252. (2023) Zbl07707638MR4603828DOI10.1016/j.jde.2023.06.001
  13. Marichal, R. L., Piñeiro, J. D., 10.1016/j.neucom.2015.04.001, Neurocomput. 162 (2015), 85-95. (2015) DOI10.1016/j.neucom.2015.04.001
  14. Meng, X., Li, Y., 10.11948/2015059, J. Appl. Anal. Comput. 5 (2015), 781-792. (2015) Zbl1448.39016MR3367467DOI10.11948/2015059
  15. Pan, L., Cao, J., 10.1016/j.nonrwa.2011.05.002, Nonlinear Anal., Real World Appl. 12 (2011), 3014-3027. (2011) Zbl1231.34121MR2832944DOI10.1016/j.nonrwa.2011.05.002
  16. Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E., Roy, R., 10.1038/ncomms5079, Nat. Commun. 5 (2014), Article ID 4079, 8 pages. (2014) DOI10.1038/ncomms5079
  17. Rosenblum, M. G., Pikovsky, A. S., Kurths, J., 10.1103/PhysRevLett.76.1804, Phys. Rev. Lett. 76 (1996), 1804-1807. (1996) MR1869044DOI10.1103/PhysRevLett.76.1804
  18. Samojlenko, A. M., Perestyuk, N. A., 10.1007/BF01086134, Ukr. Math. J. 34 (1982), 55-61. (1982) Zbl0513.34047MR0647932DOI10.1007/BF01086134
  19. Sun, W., Guan, J., Lü, J., Zheng, Z., Yu, X., Chen, S., 10.1109/TNNLS.2019.2911926, IEEE Trans. Neural Netw. Learn. Syst. 31 (2020), 960-971. (2020) MR4104636DOI10.1109/TNNLS.2019.2911926
  20. Wang, C., Li, Y., 10.1186/s13662-015-0634-0, Adv. Difference Equ. 2015 (2015), Article ID 286, 16 pages. (2015) Zbl1351.34110MR3397510DOI10.1186/s13662-015-0634-0
  21. Wang, S., Li, Y., 10.1088/1402-4896/ac46f3, Phys. Scripta 97 (2022), Article ID 035205, 16 pages. (2022) DOI10.1088/1402-4896/ac46f3
  22. Wang, S., Li, Y., Yang, X., 10.1016/j.physd.2022.133208, Physica D 434 (2022), Article ID 133208, 22 pages. (2022) Zbl1498.34113MR4393340DOI10.1016/j.physd.2022.133208
  23. Wang, S., Wang, L., Yang, X., 10.1007/s10957-023-02282-5, J. Optim. Theory Appl. 199 (2023), 258-272. (2023) MR4651066DOI10.1007/s10957-023-02282-5
  24. Wang, C., Yang, X., Chen, X., 10.1007/s12346-019-00337-5, Qual. Theory Dyn. Syst. 19 (2020), Article ID 1, 22 pages. (2020) Zbl1451.34052MR4052028DOI10.1007/s12346-019-00337-5
  25. Wang, S., Yang, X., Li, Y., 10.1016/j.cnsns.2020.105370, Commun. Nonlinear Sci. Numer. Simul. 90 (2020), Article ID 105370, 12 pages. (2020) Zbl1498.34121MR4110037DOI10.1016/j.cnsns.2020.105370
  26. Xing, J., Yang, X., Li, Y., 10.1007/s11425-016-0455-1, Sci. China, Math. 61 (2018), 439-452. (2018) Zbl1459.34108MR3762236DOI10.1007/s11425-016-0455-1
  27. Xing, J., Yang, X., Li, Y., 10.1016/j.jde.2023.03.016, J. Differ. Equations 363 (2023), 170-194. (2023) Zbl1520.70015MR4562787DOI10.1016/j.jde.2023.03.016
  28. Xu, F., Yang, X., Li, Y., Liu, M., 10.1007/s10883-018-9425-8, J. Dyn. Control Syst. 25 (2019), 437-455. (2019) Zbl1421.34026MR3953149DOI10.1007/s10883-018-9425-8
  29. Zhang, L., Jiang, H., Bi, Q., 10.1007/s11071-009-9559-z, Nonlinear Dyn. 59 (2010), 529-534. (2010) Zbl1189.93085MR2599956DOI10.1007/s11071-009-9559-z
  30. Zhang, Y., Yang, X., Li, Y., 10.1155/2013/157140, Abstr. Appl. Anal. 2013 (2013), Article ID 157140, 4 pages. (2013) Zbl1303.34033MR3147840DOI10.1155/2013/157140
  31. Zhong, X., Wang, S., 10.3390/sym14061084, Symmetry 14 (2022), Article ID 1084, 14 pages. (2022) DOI10.3390/sym14061084
  32. Zhou, W., Sun, Y., Zhang, X., Shi, P., 10.1109/TNNLS.2021.3072475, IEEE Trans. Neural Netw. Learn. Syst. 33 (2022), 6144-6157. (2022) MR4506265DOI10.1109/TNNLS.2021.3072475

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.