Multi-type synchronization of impulsive coupled oscillators via topology degree
Yingjie Bi; Zhidan Cai; Shuai Wang
Applications of Mathematics (2024)
- Volume: 69, Issue: 2, page 185-207
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBi, Yingjie, Cai, Zhidan, and Wang, Shuai. "Multi-type synchronization of impulsive coupled oscillators via topology degree." Applications of Mathematics 69.2 (2024): 185-207. <http://eudml.org/doc/299280>.
@article{Bi2024,
abstract = {The existence of synchronization is an important issue in complex dynamical networks. In this paper, we study the synchronization of impulsive coupled oscillator networks with the aid of rotating periodic solutions of impulsive system. The type of synchronization is closely related to the rotating matrix, which gives an insight for finding various types of synchronization in a united way. We transform the synchronization of impulsive coupled oscillators into the existence of rotating periodic solutions in a relevant impulsive system. Some existence theorems about rotating periodic solutions for a non-homogeneous linear impulsive system and a nonlinear perturbation system are established by topology degree theory. Finally, we give two examples to show synchronization behaviors in impulsive coupled oscillator networks.},
author = {Bi, Yingjie, Cai, Zhidan, Wang, Shuai},
journal = {Applications of Mathematics},
keywords = {synchronization; impulsive coupled oscillator; rotating periodic solution; impulsive system},
language = {eng},
number = {2},
pages = {185-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multi-type synchronization of impulsive coupled oscillators via topology degree},
url = {http://eudml.org/doc/299280},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Bi, Yingjie
AU - Cai, Zhidan
AU - Wang, Shuai
TI - Multi-type synchronization of impulsive coupled oscillators via topology degree
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 185
EP - 207
AB - The existence of synchronization is an important issue in complex dynamical networks. In this paper, we study the synchronization of impulsive coupled oscillator networks with the aid of rotating periodic solutions of impulsive system. The type of synchronization is closely related to the rotating matrix, which gives an insight for finding various types of synchronization in a united way. We transform the synchronization of impulsive coupled oscillators into the existence of rotating periodic solutions in a relevant impulsive system. Some existence theorems about rotating periodic solutions for a non-homogeneous linear impulsive system and a nonlinear perturbation system are established by topology degree theory. Finally, we give two examples to show synchronization behaviors in impulsive coupled oscillator networks.
LA - eng
KW - synchronization; impulsive coupled oscillator; rotating periodic solution; impulsive system
UR - http://eudml.org/doc/299280
ER -
References
top- Bainov, D., Simeonov, P., 10.1201/9780203751206, Pitman Monographs and Surveys in Pure and Applied Mathematics 66. Longman Scientific & Technical, New York (1993). (1993) Zbl0815.34001MR1266625DOI10.1201/9780203751206
- Barkley, D., 10.1103/PhysRevLett.72.164, Phys. Rev. Lett. 72 (1994), 164-167. (1994) DOI10.1103/PhysRevLett.72.164
- Cui, X., Li, H.-L., Zhang, L., Hu, C., Bao, H., 10.1016/j.chaos.2023.113772, Chaos Solitons Fractals 174 (2023), Article ID 113772, 8 pages. (2023) MR4612680DOI10.1016/j.chaos.2023.113772
- Dong, X., Yang, X., 10.11948/20210309, J. Appl. Anal. Comput. 12 (2022), 754-769. (2022) MR4398690DOI10.11948/20210309
- Eilertsen, J., Schnell, S., Walcher, S., 10.1007/s11538-023-01150-7, Bull. Math. Biol. 85 (2023), Article ID 48, 75 pages. (2023) Zbl1519.92362MR4581145DOI10.1007/s11538-023-01150-7
- Fečkan, M., Liu, K., Wang, J. R., 10.3934/eect.2021006, Evol. Equ. Control Theory 11 (2022), 415-437. (2022) Zbl1483.34082MR4376330DOI10.3934/eect.2021006
- Fokken, E., Göttlich, S., Kolb, O., 10.1007/s10665-019-10026-6, J. Eng. Math. 119 (2019), 217-239. (2019) Zbl1437.35481MR4039640DOI10.1007/s10665-019-10026-6
- Huygens, C., Horologium Oscillatorium: Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae, F. Muguet, Paris (1673), Latin. (1673)
- Jiang, H., Liu, Y., Zhang, L., Yu, J., 10.1016/j.cnsns.2016.02.033, Commun. Nonlinear Sci. Numer. Simul. 39 (2016), 199-208. (2016) Zbl1510.34068MR3498480DOI10.1016/j.cnsns.2016.02.033
- Karimaghaee, P., Heydari, Z. R., 10.1007/s40435-020-00628-9, Int. J. Dyn. Control 9 (2021), 211-224. (2021) MR4215925DOI10.1007/s40435-020-00628-9
- Li, H.-J., Xu, W., Song, S., Wang, W.-X., Perc, M., 10.1016/j.chaos.2021.111294, Chaos Solitons Fractals 151 (2021), Article ID 111294, 7 pages. (2021) Zbl1498.68022MR4296951DOI10.1016/j.chaos.2021.111294
- Liu, G., Li, Y., Yang, X., 10.1016/j.jde.2023.06.001, J. Differ. Equations 369 (2023), 229-252. (2023) Zbl07707638MR4603828DOI10.1016/j.jde.2023.06.001
- Marichal, R. L., Piñeiro, J. D., 10.1016/j.neucom.2015.04.001, Neurocomput. 162 (2015), 85-95. (2015) DOI10.1016/j.neucom.2015.04.001
- Meng, X., Li, Y., 10.11948/2015059, J. Appl. Anal. Comput. 5 (2015), 781-792. (2015) Zbl1448.39016MR3367467DOI10.11948/2015059
- Pan, L., Cao, J., 10.1016/j.nonrwa.2011.05.002, Nonlinear Anal., Real World Appl. 12 (2011), 3014-3027. (2011) Zbl1231.34121MR2832944DOI10.1016/j.nonrwa.2011.05.002
- Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E., Roy, R., 10.1038/ncomms5079, Nat. Commun. 5 (2014), Article ID 4079, 8 pages. (2014) DOI10.1038/ncomms5079
- Rosenblum, M. G., Pikovsky, A. S., Kurths, J., 10.1103/PhysRevLett.76.1804, Phys. Rev. Lett. 76 (1996), 1804-1807. (1996) MR1869044DOI10.1103/PhysRevLett.76.1804
- Samojlenko, A. M., Perestyuk, N. A., 10.1007/BF01086134, Ukr. Math. J. 34 (1982), 55-61. (1982) Zbl0513.34047MR0647932DOI10.1007/BF01086134
- Sun, W., Guan, J., Lü, J., Zheng, Z., Yu, X., Chen, S., 10.1109/TNNLS.2019.2911926, IEEE Trans. Neural Netw. Learn. Syst. 31 (2020), 960-971. (2020) MR4104636DOI10.1109/TNNLS.2019.2911926
- Wang, C., Li, Y., 10.1186/s13662-015-0634-0, Adv. Difference Equ. 2015 (2015), Article ID 286, 16 pages. (2015) Zbl1351.34110MR3397510DOI10.1186/s13662-015-0634-0
- Wang, S., Li, Y., 10.1088/1402-4896/ac46f3, Phys. Scripta 97 (2022), Article ID 035205, 16 pages. (2022) DOI10.1088/1402-4896/ac46f3
- Wang, S., Li, Y., Yang, X., 10.1016/j.physd.2022.133208, Physica D 434 (2022), Article ID 133208, 22 pages. (2022) Zbl1498.34113MR4393340DOI10.1016/j.physd.2022.133208
- Wang, S., Wang, L., Yang, X., 10.1007/s10957-023-02282-5, J. Optim. Theory Appl. 199 (2023), 258-272. (2023) MR4651066DOI10.1007/s10957-023-02282-5
- Wang, C., Yang, X., Chen, X., 10.1007/s12346-019-00337-5, Qual. Theory Dyn. Syst. 19 (2020), Article ID 1, 22 pages. (2020) Zbl1451.34052MR4052028DOI10.1007/s12346-019-00337-5
- Wang, S., Yang, X., Li, Y., 10.1016/j.cnsns.2020.105370, Commun. Nonlinear Sci. Numer. Simul. 90 (2020), Article ID 105370, 12 pages. (2020) Zbl1498.34121MR4110037DOI10.1016/j.cnsns.2020.105370
- Xing, J., Yang, X., Li, Y., 10.1007/s11425-016-0455-1, Sci. China, Math. 61 (2018), 439-452. (2018) Zbl1459.34108MR3762236DOI10.1007/s11425-016-0455-1
- Xing, J., Yang, X., Li, Y., 10.1016/j.jde.2023.03.016, J. Differ. Equations 363 (2023), 170-194. (2023) Zbl1520.70015MR4562787DOI10.1016/j.jde.2023.03.016
- Xu, F., Yang, X., Li, Y., Liu, M., 10.1007/s10883-018-9425-8, J. Dyn. Control Syst. 25 (2019), 437-455. (2019) Zbl1421.34026MR3953149DOI10.1007/s10883-018-9425-8
- Zhang, L., Jiang, H., Bi, Q., 10.1007/s11071-009-9559-z, Nonlinear Dyn. 59 (2010), 529-534. (2010) Zbl1189.93085MR2599956DOI10.1007/s11071-009-9559-z
- Zhang, Y., Yang, X., Li, Y., 10.1155/2013/157140, Abstr. Appl. Anal. 2013 (2013), Article ID 157140, 4 pages. (2013) Zbl1303.34033MR3147840DOI10.1155/2013/157140
- Zhong, X., Wang, S., 10.3390/sym14061084, Symmetry 14 (2022), Article ID 1084, 14 pages. (2022) DOI10.3390/sym14061084
- Zhou, W., Sun, Y., Zhang, X., Shi, P., 10.1109/TNNLS.2021.3072475, IEEE Trans. Neural Netw. Learn. Syst. 33 (2022), 6144-6157. (2022) MR4506265DOI10.1109/TNNLS.2021.3072475
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.