Delay dependent complex-valued bidirectional associative memory neural networks with stochastic and impulsive effects: An exponential stability approach

Chinnamuniyandi Maharajan; Chandran Sowmiya; Changjin Xu

Kybernetika (2024)

  • Issue: 3, page 317-356
  • ISSN: 0023-5954

Abstract

top
This paper investigates the stability in an exponential sense of complex-valued Bidirectional Associative Memory (BAM) neural networks with time delays under the stochastic and impulsive effects. By utilizing the contracting mapping theorem, the existence and uniqueness of the equilibrium point for the proposed complex-valued neural networks are verified. Moreover, based on the Lyapunov - Krasovskii functional construction, matrix inequality techniques and stability theory, some novel time-delayed sufficient conditions are attained in linear matrix inequalities (LMIs) form, which ensure the exponential stability of the trivial solution for the addressed neural networks. Finally, to illustrate the superiority and effects of our theoretical results, two numerical examples with their simulations are provided via MATLAB LMI control toolbox.

How to cite

top

Maharajan, Chinnamuniyandi, Sowmiya, Chandran, and Xu, Changjin. "Delay dependent complex-valued bidirectional associative memory neural networks with stochastic and impulsive effects: An exponential stability approach." Kybernetika (2024): 317-356. <http://eudml.org/doc/299282>.

@article{Maharajan2024,
abstract = {This paper investigates the stability in an exponential sense of complex-valued Bidirectional Associative Memory (BAM) neural networks with time delays under the stochastic and impulsive effects. By utilizing the contracting mapping theorem, the existence and uniqueness of the equilibrium point for the proposed complex-valued neural networks are verified. Moreover, based on the Lyapunov - Krasovskii functional construction, matrix inequality techniques and stability theory, some novel time-delayed sufficient conditions are attained in linear matrix inequalities (LMIs) form, which ensure the exponential stability of the trivial solution for the addressed neural networks. Finally, to illustrate the superiority and effects of our theoretical results, two numerical examples with their simulations are provided via MATLAB LMI control toolbox.},
author = {Maharajan, Chinnamuniyandi, Sowmiya, Chandran, Xu, Changjin},
journal = {Kybernetika},
keywords = {Complex-valued neural networks; Linear matrix inequality; Lyapunov–Krasovskii functional; BAM neural networks; Exponential stability; Impulsive effects; Stochastic noise; discrete delays; distributed delays; leakage delays; mixed time delays},
language = {eng},
number = {3},
pages = {317-356},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Delay dependent complex-valued bidirectional associative memory neural networks with stochastic and impulsive effects: An exponential stability approach},
url = {http://eudml.org/doc/299282},
year = {2024},
}

TY - JOUR
AU - Maharajan, Chinnamuniyandi
AU - Sowmiya, Chandran
AU - Xu, Changjin
TI - Delay dependent complex-valued bidirectional associative memory neural networks with stochastic and impulsive effects: An exponential stability approach
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 3
SP - 317
EP - 356
AB - This paper investigates the stability in an exponential sense of complex-valued Bidirectional Associative Memory (BAM) neural networks with time delays under the stochastic and impulsive effects. By utilizing the contracting mapping theorem, the existence and uniqueness of the equilibrium point for the proposed complex-valued neural networks are verified. Moreover, based on the Lyapunov - Krasovskii functional construction, matrix inequality techniques and stability theory, some novel time-delayed sufficient conditions are attained in linear matrix inequalities (LMIs) form, which ensure the exponential stability of the trivial solution for the addressed neural networks. Finally, to illustrate the superiority and effects of our theoretical results, two numerical examples with their simulations are provided via MATLAB LMI control toolbox.
LA - eng
KW - Complex-valued neural networks; Linear matrix inequality; Lyapunov–Krasovskii functional; BAM neural networks; Exponential stability; Impulsive effects; Stochastic noise; discrete delays; distributed delays; leakage delays; mixed time delays
UR - http://eudml.org/doc/299282
ER -

References

top
  1. Aouiti, C., Assali, E. A., Gharbia, I. B., Foutayeni, Y. E., , Neurocomputing 357 (2019), 292-309. MR4083491DOI
  2. Chen, X., Song, Q., Liu, Y., Zhao, Z., , Abstract Appl. Anal. 12 (2014), 1-14. MR3216046DOI
  3. Chen, X., Zhao, Z., Song, Q., Hu, J., , Appl. Math. Comput. 294 (2017), 18-35. MR3558258DOI
  4. Duan, Q., Park, J., Wu, Z., , Complexity 20 (2014), 38-48. MR3262755DOI
  5. Kumar, T. G., Ali, M. S., Priya, B., Gokulakrishnan, V., Kauser, S. A., , Int. J. Computer Math. 99 (2022), 8, 1669-1686. MR4440030DOI
  6. Gholami, Y., , Adv. Differ. Eqns, 112 (2021). MR4217062DOI
  7. Gopalsamy, K., Stability and Oscillations in Delay Differential Equations of Population Dynamics., Kluwer Academic Publishers, Dordrecht 1992. MR1163190
  8. Gu, K., , In: Proc. 39th IEEE Conference on Decision Control, Sydney 3 (200), pp. 2805-2810. DOI
  9. Haykin, S., Neural Networks., Prentice Hall, New Jersey 1999. 
  10. Ho, D. W. C., Liang, J., Lam, J., , Neural Networks 19 (2006), 10, 1581-1590. MR2111863DOI
  11. Hu, J., Tan, H., Zeng, C., , Neurocomputing 416 (2020), 8, 1-11. MR4034008DOI
  12. Hu, J., Wang, J., , IEEE Trans. Neur. Netw. Learn. Systems 23 (2012), 853-865. DOI
  13. Huo, N., Li, B., Li, Y., , AIMS Math. 7 (2022), 3, 3653-3679. MR4347881DOI
  14. Hymavathi, M., Muhiuddin, G., Ali, M. S., Jehad, F., Al-Amri, Gunasekaran, N., Vadivel, R., , Fractal and Fractional 6 (2022), 3. MR4209580DOI
  15. Ji, M. D., He, Y., Wu, M., Zhang, C. K., , In Proc. 33rd Chinese control conference; Nanjing 2014, pp. 6119-6123. DOI
  16. Ji, M. D., He, Y., Wu, M., Zhang, C. K., , Appl. Math. Comput. 256 (2015), 175-182. MR3316058DOI
  17. Jia, S., Chen, Y., , Adv. Diff. Eqns 200 (2020). MR4095855DOI
  18. Kosko, B., , Appl. Optim. 26 (1987), 4947-4960. MR0931862DOI
  19. Kosko, B., , IEEE Trans. System Man Cybernet. 18 (1988), 49-60. MR0931862DOI
  20. Li, B., Liu, F., Song, Q., Zhang, D., Qiu, H., , Neurocomputing 520 (2023), 230-239. DOI
  21. Li, B., Tang, B., , J. Math. Article ID 9988073 (2021), 20 pages. MR4271429DOI
  22. Li, C., Lian, J., Wang, Y., , Neurocomputing 275 (2018), 2565-2573. DOI
  23. Li, C., Li, C., Liao, X., Huang, T., , Neurocomputing 74 (2011), 1541-1550. DOI
  24. Li, D., Wang, X., Xu, D., Existence and global image exponential stability of periodic solution for impulsive stochastic neural networks with delays., Nonlinear Anal.: Hybrid Sys. 6 (2012), 847-858. MR2917455
  25. Li, X., Bohner, M., Wang, C., , Automatica 52 (2015), 173-178. MR3310827DOI
  26. Li, X., Song, S., , IEEE Trans. Automat. Control 62 (2017), 1, 406-411. MR3598021DOI
  27. Li, X., Zhang, X., Song, S., , Automatica 76 (2017), 378-382. MR3590588DOI
  28. Liu, X., Chen, T., , IEEE Trans. Neural Netw. Learn. Sys. 23 (2015), 3, 593-606. MR3465659DOI
  29. Maharajan, C., Raja, R., Cao, J., Rajchakit, G., Alsaedi, A., , Chaos, Solitons Fractals 115 (2018), 268-282. MR3862766DOI
  30. Maharajan, C., Raja, R., Cao, J., Rajchakit, G., , J. Frankl. Inst. 355 (2018), 11, 4727-4754. MR3807164DOI
  31. Maharajan, C., Sowmiya, C., , Franklin Open 5 (2023), 100042. DOI
  32. Maharajan, C., Sowmiya, C., Xu, C. J., , J. Intel. Fuzzy Sys. 46 2024, 2, 4291-4313. DOI
  33. Mao, X., Wang, X., Qin, H., , Neurocomputing 509 (2022), 206-220. DOI
  34. Ou, W., Xu, C. J., Cui, Q., Liu, Z., Pang, Y., Farman, M., Ahmad, S., Zeb, A., , Math. Meth. Appl. Sci. (2023), 1-25. DOI
  35. Park, J., Kwon, O., , Chaos, Solitons Fractals 41 (2009), 1174-1181. MR2537632DOI
  36. Rajchakit, G., Sriraman, R., , Neur. Proces. Lett. 53 (2021), 581-606. DOI
  37. Rakkiyappan, R., Velmurugan, G., Li, X., , Neur. Proces. Lett. 41 (2015), 435-468. DOI
  38. Ren, H., Karimi, H. R., Lu, R., Wu, Y., , IEEE Tans. Industr. Electronics 67 (2020), 6, 4980-4990. DOI
  39. Samidurai, R., Sriraman, R., , J. Franklin Inst. 356 (2019), 8, 4335-4357. MR3950442DOI
  40. Samidurai, R., Sriraman, R., Zhu, S., , Int. J. Syst. Sci. 50 (2019), 8, 1609-1625. MR3980682DOI
  41. Shao, S., Du, B., , Symmetry 14 ID 2224 (2022), 1-11. DOI
  42. Song, Q., Shu, H., Zhao, Z., Liu, Y., Alsaadi, F. E., , Neurocomputing 244 (2017), 33-41. DOI
  43. Song, Q., Yang, L., Liu, Y., Alsaadi, F., , Neurocomputing 521 (2023), 191-198. DOI
  44. Song, Q., Zhao, Z., Liu, Y., , Neurocomputing 159 (2015), 96-104. DOI
  45. Sriraman, R., Nedunchezhiyan, A., , Kybernetika 58 (2022), 4, 498-521. MR4521853DOI
  46. Sriraman, R., Cao, Y., Samidurai, R., , Math. and Comput. Simul. 171 (2020), 103-118. MR4066164DOI
  47. Ali, M. S., Yogambigai, J., Saravanan, S., Elakkia, S., , J. Comput. and Appl. Math. 349 (2019), 142-156. MR3886702DOI
  48. Tan, Y., Tang, S., Chen, X., , Adv. Diff. Eqns 62 (2018). MR3766070DOI
  49. Tian, J., Xie, X., , Phys. Lett. A 374 (2010), 7, 938-943. MR2580319DOI
  50. Wang, Z., Huang, L., , Neurocomputing 173 (2016), 3, 2083-2089. DOI
  51. Wu, M., Liu, F., Shi, P., He, Y., Yokoyama, R., , IEEE Trans. Syst. Man Cybernet., Part B: Cybernetics 38 (2008), 4, 1152-1156. MR0697005DOI
  52. Xie, D., Jiang, Y., , Neurocomputing 207 (2016), 528-538. DOI
  53. Xu, C. J., Mu, D., Pan, Y., Aouiti, C., Yao, L., , J. Appl. Anal. Comput.13 (2023), 3, 1119-1136. MR4593704DOI
  54. Xu, M., Du, B., , AIMS Math. 5 (2020), 6, 6841-6855. MR4148983DOI
  55. Yu, J., Zhang, K., Fei, S., , Asian J. Control 11 (2009), 6, 633-642. MR2791309DOI
  56. Zhang, W., Li, C., , Int. J. Biomath. 7 (2014), 2, 24 pages. MR3189684DOI
  57. Zhang, W., Li, C., Huang, T., Tan, J., , Neural Computing Appl. 26 (2015), 1781-1787. DOI
  58. Zhang, X., Li, X., , IET Control Theory Appl. 11 (2017), 1, 81-89. MR3644361DOI
  59. Zhang, Z., Lin, C., Chen, B., , IEEE Trans. Neur. Netw. Learn. Systems 25 (2014), 9, 1704-1708. DOI
  60. Zhou, B., Song, Q., , IEEE Trans. Neur. Netw. Learn. Systems 24 (2013), 1227-1238. DOI
  61. Zhou, Q., Wan, L., Fu, H., Zhang, Q., , AIMS Math. 6 (2021), 4, 4142-4155. MR4220400DOI
  62. Zhou, W., Li, B., Zhang, J. E., , Mathemat. Probl. Engrg. Article ID 8877129; (2020), 16 pages. MR4178860DOI
  63. Zou, K., Li, X., Wang, N., Lou, J., Lu, J., , Complexity Article ID 8712027; (2020), 9 pages. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.