Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses
Ramalingam Sriraman; Asha Nedunchezhiyan
Kybernetika (2022)
- Volume: 58, Issue: 4, page 498-521
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSriraman, Ramalingam, and Nedunchezhiyan, Asha. "Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses." Kybernetika 58.4 (2022): 498-521. <http://eudml.org/doc/299566>.
@article{Sriraman2022,
abstract = {In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the $n$-dimensional Clifford-valued neural network into $2^mn$-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen’s integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results.},
author = {Sriraman, Ramalingam, Nedunchezhiyan, Asha},
journal = {Kybernetika},
keywords = {global stability; T-S fuzzy; Clifford-valued neural networks; Lyapunov--Krasovskii functionals; impulses},
language = {eng},
number = {4},
pages = {498-521},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses},
url = {http://eudml.org/doc/299566},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Sriraman, Ramalingam
AU - Nedunchezhiyan, Asha
TI - Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 4
SP - 498
EP - 521
AB - In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the $n$-dimensional Clifford-valued neural network into $2^mn$-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen’s integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results.
LA - eng
KW - global stability; T-S fuzzy; Clifford-valued neural networks; Lyapunov--Krasovskii functionals; impulses
UR - http://eudml.org/doc/299566
ER -
References
top- Ahn, C. K., , Nonlinear Dyn. 61 (2010), 483-489. MR2718308DOI
- Ahn, C. K., , Fuzzy Sets Syst. 179 (2011), 100-111. MR2818200DOI
- Aouiti, C., Dridi, F., , Int. J. Syst. Sci. 51 (2020), 1759-1781. MR4124722DOI
- Aouiti, C., Gharbia, I. B., , Comput. Appl. Math. 39 (2020), 120. MR4083491DOI
- Balasubramaniam, P., Vembarasan, V., Rakkiyappan, R., , Neural Process. Lett. 33 (2011), 111-136. DOI
- Boonsatit, N., Sriraman, R., Rojsiraphisal, T., Lim, C. P., Hammachukiattikul, P., Rajchakit, G., , IEEE Access. 9 (2021), 111050-111061. DOI
- Cao, J., Ho, D. W. C., , Chaos Solitons Fract. 24 (2005), 1317-1329. MR2123277DOI
- Chen, S., Li, H. L., Kao, Y., Zhang, L., Hu, C., , J. Franklin Inst. 358 (2021), 7650-7673. MR4319372DOI
- Clifford, W. K., 10.2307/2369379, Amer. J. Math. 1 (1878), 350-358. MR1505182DOI10.2307/2369379
- Gopalsamy, K., , Appl. Math. Comput. 154 (2004), 783-813. MR2072820DOI
- Guan, Z. H., Chen, G. R., , Neural Network 12 (1999), 273-280. DOI
- Hirose, A., Complex-valued Neural Networks: Theories and Applications., World Scientific 2003. MR2061862
- Hitzer, E., Nitta, T., Kuroe, Y., , Adv. Appl. Clifford Algebras 23 (2013), 377-404. MR3068125DOI
- Hopfield, J. J., , Proc. Natl. Acad. Sci. 81 (1984), 3088-3092. DOI
- Isokawa, T., Nishimura, H., Kamiura, N., Matsui, N., , Int. J. Neural Syst. 18 (2008), 135-145. DOI
- Jian, J., Wan, P., , Fuzzy Sets Syst. 338 (2018), 23-39. MR3770768DOI
- Li, B., Li, Y., , Complexity 2019 (2019), 6751806. DOI
- Li, X., Wu, J., , Automatica 64 (2016), 63-69. MR3433081DOI
- Li, Y., Xiang, J., , Neurocomputing 332 (2019), 259-269. DOI
- Liu, Y., Wang, Z., Liu, X., , Neural Netw. 19 (2006), 667-675. DOI
- Liu, Y., Xu, P., Lu, J., Liang, J., , Nonlinear Dyn. 84 (2016), 767-777. MR3474926DOI
- Long, S., Song, Q., Wang, X., Li, D., , J. Franklin Inst. 349 (2012), 2461-2479. MR2960619DOI
- Mandic, D. P., Jahanchahi, C., Took, C. C., , IEEE Signal Proc. Lett. 18 (2011), 47-50. DOI
- Marcus, C. M., Westervelt, R. M., , Phys. Rev. A 39 (1989), 347-359. MR0978323DOI
- Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H., Quaternion neural network with geometrical operators., J. Intell. Fuzzy Syst. 15 (2004), 149-164.
- Nitta, T., , Neural Netw. 16 (2003), 1101-1105. DOI
- Park, P. G., Ko, J. W., Jeong, C., , Automatica 47 (2011), 235-238. MR2878269DOI
- Pearson, J. K., Bisset, D. L., Neural networks in the Clifford domain., In: Proc. 1994 IEEE ICNN, Orlando 1994.
- Rajchakit, G., Sriraman, R., Boonsatit, N., Hammachukiattikul, P., Lim, C. P., Agarwal, P., , Adv Differ. Equat. 2021 (2021), 1-21. MR4260066DOI
- Rajchakit, G., Sriraman, R., Lim, C. P, Unyong, B., , Math. Comput. Simulat. (2021). MR4439395DOI
- Rajchakit, G., Sriraman, R., Vignesh, P., Lim, C. P., Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis., Appl. Math. Comput. 407 (2021), 126309. MR4256147
- Samidurai, R., Sriraman, R., Zhu, S., , Neurocomputing 338 (2019), 262-273. DOI
- Samidurai, R., Senthilraj, S., Zhu, Q., Raja, R., Hu, W., , J. Franklin Inst. 354 (2017), 3574-3593. MR3634547DOI
- Shen, S., Li, Y., , Neural Process. Lett. 51 (2020), 1749-1769. MR4166609DOI
- Shu, H., Song, Q., Liu, Y., Zhao, Z., Alsaadi, F. E., , Neurocomputing 247 (2017), 202-212. DOI
- Song, Q., , Neurocomputing 71 (2008), 2823-2830. DOI
- Song, Q., Long, L., Zhao, Z., Liu, Y., Alsaadi, F. E., , Neurocomputing 412 (2020), 287-294. DOI
- Song, Q., Zhao, Z., Liu, Y., , Neurocomputing 159 (2015), 96-104. DOI
- Takagi, T., Sugeno, M., , IEEE Trans. Syst. Man Cybernet. 15 (1985), 116-132. DOI
- Tan, Y., Tang, S., Yang, J., Liu, Z., 10.1186/s13660-017-1490-0, J. Inequal. Appl. 2017 (2017), 215. MR3696162DOI10.1186/s13660-017-1490-0
- Wang, L., Lam, H. K., , IEEE Trans. Cybern. 49 (2019), 1551-1556. DOI
- Zhang, Z., Liu, X., Zhou, D., Lin, C., Chen, J., Wang, H., , IEEE Trans. Syst. Man Cybern. Syst. 48 (2018), 2371-2382. DOI
- Zhu, J., Sun, J., , Neurocomputing 173 (2016), 685-689. DOI
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.