Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses

Ramalingam Sriraman; Asha Nedunchezhiyan

Kybernetika (2022)

  • Volume: 58, Issue: 4, page 498-521
  • ISSN: 0023-5954

Abstract

top
In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the n -dimensional Clifford-valued neural network into 2 m n -dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen’s integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results.

How to cite

top

Sriraman, Ramalingam, and Nedunchezhiyan, Asha. "Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses." Kybernetika 58.4 (2022): 498-521. <http://eudml.org/doc/299566>.

@article{Sriraman2022,
abstract = {In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the $n$-dimensional Clifford-valued neural network into $2^mn$-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen’s integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results.},
author = {Sriraman, Ramalingam, Nedunchezhiyan, Asha},
journal = {Kybernetika},
keywords = {global stability; T-S fuzzy; Clifford-valued neural networks; Lyapunov--Krasovskii functionals; impulses},
language = {eng},
number = {4},
pages = {498-521},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses},
url = {http://eudml.org/doc/299566},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Sriraman, Ramalingam
AU - Nedunchezhiyan, Asha
TI - Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 4
SP - 498
EP - 521
AB - In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the $n$-dimensional Clifford-valued neural network into $2^mn$-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen’s integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results.
LA - eng
KW - global stability; T-S fuzzy; Clifford-valued neural networks; Lyapunov--Krasovskii functionals; impulses
UR - http://eudml.org/doc/299566
ER -

References

top
  1. Ahn, C. K., , Nonlinear Dyn. 61 (2010), 483-489. MR2718308DOI
  2. Ahn, C. K., , Fuzzy Sets Syst. 179 (2011), 100-111. MR2818200DOI
  3. Aouiti, C., Dridi, F., , Int. J. Syst. Sci. 51 (2020), 1759-1781. MR4124722DOI
  4. Aouiti, C., Gharbia, I. B., , Comput. Appl. Math. 39 (2020), 120. MR4083491DOI
  5. Balasubramaniam, P., Vembarasan, V., Rakkiyappan, R., , Neural Process. Lett. 33 (2011), 111-136. DOI
  6. Boonsatit, N., Sriraman, R., Rojsiraphisal, T., Lim, C. P., Hammachukiattikul, P., Rajchakit, G., , IEEE Access. 9 (2021), 111050-111061. DOI
  7. Cao, J., Ho, D. W. C., , Chaos Solitons Fract. 24 (2005), 1317-1329. MR2123277DOI
  8. Chen, S., Li, H. L., Kao, Y., Zhang, L., Hu, C., , J. Franklin Inst. 358 (2021), 7650-7673. MR4319372DOI
  9. Clifford, W. K., 10.2307/2369379, Amer. J. Math. 1 (1878), 350-358. MR1505182DOI10.2307/2369379
  10. Gopalsamy, K., , Appl. Math. Comput. 154 (2004), 783-813. MR2072820DOI
  11. Guan, Z. H., Chen, G. R., , Neural Network 12 (1999), 273-280. DOI
  12. Hirose, A., Complex-valued Neural Networks: Theories and Applications., World Scientific 2003. MR2061862
  13. Hitzer, E., Nitta, T., Kuroe, Y., , Adv. Appl. Clifford Algebras 23 (2013), 377-404. MR3068125DOI
  14. Hopfield, J. J., , Proc. Natl. Acad. Sci. 81 (1984), 3088-3092. DOI
  15. Isokawa, T., Nishimura, H., Kamiura, N., Matsui, N., , Int. J. Neural Syst. 18 (2008), 135-145. DOI
  16. Jian, J., Wan, P., , Fuzzy Sets Syst. 338 (2018), 23-39. MR3770768DOI
  17. Li, B., Li, Y., , Complexity 2019 (2019), 6751806. DOI
  18. Li, X., Wu, J., , Automatica 64 (2016), 63-69. MR3433081DOI
  19. Li, Y., Xiang, J., , Neurocomputing 332 (2019), 259-269. DOI
  20. Liu, Y., Wang, Z., Liu, X., , Neural Netw. 19 (2006), 667-675. DOI
  21. Liu, Y., Xu, P., Lu, J., Liang, J., , Nonlinear Dyn. 84 (2016), 767-777. MR3474926DOI
  22. Long, S., Song, Q., Wang, X., Li, D., , J. Franklin Inst. 349 (2012), 2461-2479. MR2960619DOI
  23. Mandic, D. P., Jahanchahi, C., Took, C. C., , IEEE Signal Proc. Lett. 18 (2011), 47-50. DOI
  24. Marcus, C. M., Westervelt, R. M., , Phys. Rev. A 39 (1989), 347-359. MR0978323DOI
  25. Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H., Quaternion neural network with geometrical operators., J. Intell. Fuzzy Syst. 15 (2004), 149-164. 
  26. Nitta, T., , Neural Netw. 16 (2003), 1101-1105. DOI
  27. Park, P. G., Ko, J. W., Jeong, C., , Automatica 47 (2011), 235-238. MR2878269DOI
  28. Pearson, J. K., Bisset, D. L., Neural networks in the Clifford domain., In: Proc. 1994 IEEE ICNN, Orlando 1994. 
  29. Rajchakit, G., Sriraman, R., Boonsatit, N., Hammachukiattikul, P., Lim, C. P., Agarwal, P., , Adv Differ. Equat. 2021 (2021), 1-21. MR4260066DOI
  30. Rajchakit, G., Sriraman, R., Lim, C. P, Unyong, B., , Math. Comput. Simulat. (2021). MR4439395DOI
  31. Rajchakit, G., Sriraman, R., Vignesh, P., Lim, C. P., Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis., Appl. Math. Comput. 407 (2021), 126309. MR4256147
  32. Samidurai, R., Sriraman, R., Zhu, S., , Neurocomputing 338 (2019), 262-273. DOI
  33. Samidurai, R., Senthilraj, S., Zhu, Q., Raja, R., Hu, W., , J. Franklin Inst. 354 (2017), 3574-3593. MR3634547DOI
  34. Shen, S., Li, Y., , Neural Process. Lett. 51 (2020), 1749-1769. MR4166609DOI
  35. Shu, H., Song, Q., Liu, Y., Zhao, Z., Alsaadi, F. E., , Neurocomputing 247 (2017), 202-212. DOI
  36. Song, Q., , Neurocomputing 71 (2008), 2823-2830. DOI
  37. Song, Q., Long, L., Zhao, Z., Liu, Y., Alsaadi, F. E., , Neurocomputing 412 (2020), 287-294. DOI
  38. Song, Q., Zhao, Z., Liu, Y., , Neurocomputing 159 (2015), 96-104. DOI
  39. Takagi, T., Sugeno, M., , IEEE Trans. Syst. Man Cybernet. 15 (1985), 116-132. DOI
  40. Tan, Y., Tang, S., Yang, J., Liu, Z., 10.1186/s13660-017-1490-0, J. Inequal. Appl. 2017 (2017), 215. MR3696162DOI10.1186/s13660-017-1490-0
  41. Wang, L., Lam, H. K., , IEEE Trans. Cybern. 49 (2019), 1551-1556. DOI
  42. Zhang, Z., Liu, X., Zhou, D., Lin, C., Chen, J., Wang, H., , IEEE Trans. Syst. Man Cybern. Syst. 48 (2018), 2371-2382. DOI
  43. Zhu, J., Sun, J., , Neurocomputing 173 (2016), 685-689. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.