Some results on the weak dominance relation between ordered weighted averaging operators and T-norms
Kybernetika (2024)
- Issue: 3, page 379-393
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLi, Gang, Li, Zhenbo, and Wang, Jing. "Some results on the weak dominance relation between ordered weighted averaging operators and T-norms." Kybernetika (2024): 379-393. <http://eudml.org/doc/299284>.
@article{Li2024,
abstract = {Aggregation operators have the important application in any fields where the fusion of information is processed. The dominance relation between two aggregation operators is linked to the fusion of fuzzy relations, indistinguishability operators and so on. In this paper, we deal with the weak dominance relation between two aggregation operators which is closely related with the dominance relation. Weak domination of isomorphic aggregation operators and ordinal sum of conjunctors is presented. More attention is paid to the weak dominance relation between ordered weighted averaging operators and Łukasiewicz t-norm. Furthermore, the relationships between weak dominance and some functional inequalities of aggregation operators are discussed.},
author = {Li, Gang, Li, Zhenbo, Wang, Jing},
journal = {Kybernetika},
keywords = {domination; OWA operators; ordinal sum; t-norm},
language = {eng},
number = {3},
pages = {379-393},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Some results on the weak dominance relation between ordered weighted averaging operators and T-norms},
url = {http://eudml.org/doc/299284},
year = {2024},
}
TY - JOUR
AU - Li, Gang
AU - Li, Zhenbo
AU - Wang, Jing
TI - Some results on the weak dominance relation between ordered weighted averaging operators and T-norms
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 3
SP - 379
EP - 393
AB - Aggregation operators have the important application in any fields where the fusion of information is processed. The dominance relation between two aggregation operators is linked to the fusion of fuzzy relations, indistinguishability operators and so on. In this paper, we deal with the weak dominance relation between two aggregation operators which is closely related with the dominance relation. Weak domination of isomorphic aggregation operators and ordinal sum of conjunctors is presented. More attention is paid to the weak dominance relation between ordered weighted averaging operators and Łukasiewicz t-norm. Furthermore, the relationships between weak dominance and some functional inequalities of aggregation operators are discussed.
LA - eng
KW - domination; OWA operators; ordinal sum; t-norm
UR - http://eudml.org/doc/299284
ER -
References
top- Alsina, C., Schweizer, B., Frank, M. J., Associative Functions: Triangular Norms and Copulas., World Scientific, 2006. MR2222258
- Alsina, C., Trillas, E., , Fuzzy Sets Syst. 50 (1992), 175-178. MR1185392DOI
- Běhounek, L., Bodenhofer, U., Cintula, P., Saminger-Platz, S., Sarkoci, P., , Fuzzy Sets Syst. 262 (2015), 78-101. MR3294358DOI
- Bentkowska, U., al., et, , Springer, Cham (2018). DOI
- Bejines, C., Ardanza-Trevijano, S., Chasco, M. J., Elorza, J., , Fuzzy Sets Syst. 446 (2022), 53-67. MR4473741DOI
- Bo, Q., Li, G., , Symmetry 14 (2022), 2354. DOI
- Beliakov, G., Bustince, H. S., Sanchez, T. C., 10.1007/978-3-319-24753-3_2, Stud. Fuzziness Soft Comput. 329, Springer, Berlin, Heidelberg 2016. MR3382259DOI10.1007/978-3-319-24753-3_2
- Bustince, H., Montero, J., Mesiar, R., , Fuzzy Sets Syst. 160 (2009), 766-777. Zbl1186.68459MR2493274DOI
- Calvo, T., , Fuzzy Sets Syst. 104 (1999), 85-96. MR1685812DOI
- Carbonell, M., Mas, M., Suñer, J., Torrens, J., 10.1142/S0218488596000202, Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 4 (1996), 351-368. MR1414353DOI10.1142/S0218488596000202
- Walle, B. V. De, Baets, B. De, Kerre, E., , Fuzzy Sets Syst. 97 (1998), 349-359. MR1639465DOI
- Walle, B. V. De, Baets, B. De, Kerre, E., , Fuzzy Sets Syst. 99 (1998), 303-310. MR1645693DOI
- Díaz, S., Montes, S., Baets, B. De, , IEEE Trans. Fuzzy Syst. 15 (2007), 275-286. DOI
- Drewniak, J., Rak, E., , Fuzzy Sets Syst. 161 (2010), 189-201. MR2566238DOI
- Drewniak, J., Rak, E., , Fuzzy Sets Syst. 191 (2012), 62-71. MR2874823DOI
- Durante, F., Ricci, R. G., 10.1016/j.ins.2009.04.001, Inform. Sci. 179 (2009), 2389-2694. MR2536413DOI10.1016/j.ins.2009.04.001
- Durante, F., Ricci, R. G., , Fuzzy Sets Syst. 335 (2018), 55-66. MR3765540DOI
- Fechner, W., Rak, E., Zedam, L., , Fuzzy Sets Syst. 332 (2018), 56-73. MR3732249DOI
- Fodor, J., Roubens, M., Fuzzy Preference Modelling and Multicriteria Decision Support., Kluwer Academic Publishers, Dordrecht 1994. Zbl0827.90002
- Grabisch, M., Marichal, J., Mesiar, R., Pap, E., Aggregation Functions., Cambridge University Press, Cambridge 2009. Zbl1206.68299MR2538324
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
- Li, G., Zhang, L., Wang, J., Li, Z., , Fuzzy Sets Syst. 467 (2023), 108487. MR4598457DOI
- Mesiar, R., Saminger, S., , Soft Computing 8 (2004), 562-570. DOI
- Nagy, B., Basbous, R., Tajti, T., , Fuzzy Sets Syst. 376 (2019), 127-151. MR4011088DOI
- Nguyen, H. T., Walker, C. L., Walker, E. A., A first Course in Fuzzy Logic., Taylor and Francis, CRC Press, 2019. MR3887670
- Saminger, S., Mesiar, R., Bodenhofer, U., , Int. J. Uncert. Fuzziness Knowledge-Based Syst. 10 (2002), 11-35. Zbl1053.03514MR1962666DOI
- Saminger, S., Baets, B. De, Meyer, H. De, On the dominance relation between ordinal sums of conjunctors., Kybernetika 42 (2006), 337-350. MR2253393
- Saminger, S., , Fuzzy Sets Syst. 160 (2009), 2017-2031. MR2555018DOI
- Sarkoci, P., Domination in the families of Frank and Hamacher t-norms., Kybernetika 41 (2005), 349-360. MR2181423
- Sarkoci, P., , Aequat. Math. 75 (2008), 201-207. MR2424129DOI
- Schweizer, B., Sklar, A., Probabilistic Metric Spaces., North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York 1983. Zbl0546.60010MR0790314
- Su, Y., Riera, J. V., Ruiz-Aguilera, D., Torrens, J., , Fuzzy Sets Syst. 357 (2019), 27-46. MR3913057DOI
- Tardiff, R. M., , Aequat. Math. 20 (1980), 51-58. MR0569950DOI
- Yager, R. R., , IEEE Trans. Systems Man Cybernet. 18 (1988), 183-190. MR0931863DOI
- Yang, X. P., , Fuzzy Sets Syst. 397 (2020), 41-60. MR4135509DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.