On the dominance relation between ordinal sums of conjunctors

Susanne Saminger; Bernard De Baets; Hans De Meyer

Kybernetika (2006)

  • Volume: 42, Issue: 3, page 337-350
  • ISSN: 0023-5954

Abstract

top
This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.

How to cite

top

Saminger, Susanne, De Baets, Bernard, and De Meyer, Hans. "On the dominance relation between ordinal sums of conjunctors." Kybernetika 42.3 (2006): 337-350. <http://eudml.org/doc/33809>.

@article{Saminger2006,
abstract = {This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.},
author = {Saminger, Susanne, De Baets, Bernard, De Meyer, Hans},
journal = {Kybernetika},
keywords = {conjunctor; copula; dominance; ordinal sum; quasi-copula; t-norm; conjunctor; copula; dominance; ordinal sum; quasi-copula; -norm},
language = {eng},
number = {3},
pages = {337-350},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the dominance relation between ordinal sums of conjunctors},
url = {http://eudml.org/doc/33809},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Saminger, Susanne
AU - De Baets, Bernard
AU - De Meyer, Hans
TI - On the dominance relation between ordinal sums of conjunctors
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 3
SP - 337
EP - 350
AB - This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.
LA - eng
KW - conjunctor; copula; dominance; ordinal sum; quasi-copula; t-norm; conjunctor; copula; dominance; ordinal sum; quasi-copula; -norm
UR - http://eudml.org/doc/33809
ER -

References

top
  1. Aczél J., Lectures on Functional Equations and their Applications, Academic Press, New York 1966 MR0208210
  2. Birkhoff G., Lattice Theory, American Mathematical Society, Providence, Rhode Island 1973 Zbl0537.06001
  3. Bodenhofer U., 10.1016/S0165-0114(02)00436-0, Fuzzy Sets and Systems 137 (2003), 1, 113–136 Zbl1052.91032MR1992702DOI10.1016/S0165-0114(02)00436-0
  4. Bodenhofer U., A Similarity-Based Generalization of Fuzzy Orderings, (Schriftenreihe der Johannes-Kepler-Universität Linz C 26.) Universitätsverlag Rudolf Trauner, Linz 1999 Zbl1113.03333
  5. Clifford A. H., 10.2307/2372706, Amer. J. Math. 76 (1954), 631–646 (1954) MR0062118DOI10.2307/2372706
  6. Baets B. De, Janssens, S., Meyer H. De, Meta-theorems on inequalities for scalar fuzzy set cardinalities, Fuzzy Sets and Systems 157 (2006), 1463–1476 Zbl1106.03046MR2234554
  7. Baets B. De, Mesiar R., 10.1016/S0165-0114(96)00331-4, Fuzzy Sets and Systems 97 (1998), 211–223 (1998) Zbl0930.03070MR1645614DOI10.1016/S0165-0114(96)00331-4
  8. Baets B. De, Mesiar R., Ordinal sums of aggregation operators, In: Technologies for Constructing Intelligent Systems (B. Bouchon-Meunier, J. Gutiérrez-Ríos, L. Magdalena, and R. R. Yager, eds.), Vol. 2: Tools, Physica–Verlag, Heidelberg 2002, pp. 137–148 Zbl1015.68194
  9. Díaz S., Montes, S., Baets B. De, Transitivity bounds in additive fuzzy preference structures, IEEE Trans. Fuzzy Systems, to appear 
  10. Dubois D., Prade H., New results about properties and semantics of fuzzy set-theoretic operators, In: Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems (P. P. Wang and S. K. Chang, eds.), Plenum Press, New York 1980, pp. 59–75 (1980) Zbl0593.04004MR0587634
  11. Durante F., Sempi C., Semicopulæ, Kybernetika 41 (2005), 3, 315–328 MR2181421
  12. Genest C., Molina L., Lallena, L., Sempi C., 10.1006/jmva.1998.1809, J. Multivariate Anal. 69 (1999), 193–205 (1999) Zbl0935.62059MR1703371DOI10.1006/jmva.1998.1809
  13. Janssens S., Baets, B. De, Meyer H. De, Bell-type inequalities for quasi-copulas, Fuzzy Sets and Systems 148 (2004), 263–278 Zbl1057.81011MR2100199
  14. Jenei S., A note on the ordinal sum theorem and its consequence for the construction of triangular norms, Fuzzy Sets and Systems 126 (2002), 199–205 Zbl0996.03508MR1884686
  15. Klement E. P., Mesiar, R., Pap E., Triangular Norms, (Trends in Logic. Studia Logica Library 8.) Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
  16. Klement E. P., Mesiar, R., Pap E., 10.1007/s002330010127, H. Clifford. Semigroup Forum 65 (2002), 71–82 Zbl1007.20054MR1903555DOI10.1007/s002330010127
  17. Ling C. M., Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212 (1965) MR0190575
  18. Mayor G., Torrens J., 10.1016/0165-0114(91)90219-G, Fuzzy Sets and Systems 41 (1991), 161–166 (1991) Zbl0739.39006MR1111963DOI10.1016/0165-0114(91)90219-G
  19. Mesiar R., Saminger S., 10.1007/s00500-003-0315-x, Soft Computing 8 (2004), 562–570 Zbl1066.68127DOI10.1007/s00500-003-0315-x
  20. Nelsen R. B., 10.1007/978-1-4757-3076-0, (Lecture Notes in Statistics 139.) Springer, New York 1999 Zbl1152.62030MR1653203DOI10.1007/978-1-4757-3076-0
  21. Saminger S., On ordinal sums of triangular norms on bounded lattices, Fuzzy Sets and Systems 157 (2006), 1406–1416 Zbl1099.06004MR2226983
  22. Saminger S., Aggregation in Evaluation of Computer-Assisted Assessment, (Schriftenreihe der Johannes-Kepler-Universität Linz C 44.) Universitätsverlag Rudolf Trauner, Linz 2005 Zbl1067.68143
  23. Saminger S., Mesiar, R., Bodenhofer U., 10.1142/S0218488502001806, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10 (2002), 11–35 Zbl1053.03514MR1962666DOI10.1142/S0218488502001806
  24. Schweizer B., Sklar A., Probabilistic Metric Spaces, North–Holland, New York 1983 Zbl0546.60010MR0790314
  25. Tardiff R. M., 10.2140/pjm.1976.65.233, Pacific J. Math. 65 (1976), 233–251 (1976) Zbl0337.54004MR0423315DOI10.2140/pjm.1976.65.233

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.