On the dominance relation between ordinal sums of conjunctors
Susanne Saminger; Bernard De Baets; Hans De Meyer
Kybernetika (2006)
- Volume: 42, Issue: 3, page 337-350
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSaminger, Susanne, De Baets, Bernard, and De Meyer, Hans. "On the dominance relation between ordinal sums of conjunctors." Kybernetika 42.3 (2006): 337-350. <http://eudml.org/doc/33809>.
@article{Saminger2006,
abstract = {This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.},
author = {Saminger, Susanne, De Baets, Bernard, De Meyer, Hans},
journal = {Kybernetika},
keywords = {conjunctor; copula; dominance; ordinal sum; quasi-copula; t-norm; conjunctor; copula; dominance; ordinal sum; quasi-copula; -norm},
language = {eng},
number = {3},
pages = {337-350},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the dominance relation between ordinal sums of conjunctors},
url = {http://eudml.org/doc/33809},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Saminger, Susanne
AU - De Baets, Bernard
AU - De Meyer, Hans
TI - On the dominance relation between ordinal sums of conjunctors
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 3
SP - 337
EP - 350
AB - This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.
LA - eng
KW - conjunctor; copula; dominance; ordinal sum; quasi-copula; t-norm; conjunctor; copula; dominance; ordinal sum; quasi-copula; -norm
UR - http://eudml.org/doc/33809
ER -
References
top- Aczél J., Lectures on Functional Equations and their Applications, Academic Press, New York 1966 MR0208210
- Birkhoff G., Lattice Theory, American Mathematical Society, Providence, Rhode Island 1973 Zbl0537.06001
- Bodenhofer U., 10.1016/S0165-0114(02)00436-0, Fuzzy Sets and Systems 137 (2003), 1, 113–136 Zbl1052.91032MR1992702DOI10.1016/S0165-0114(02)00436-0
- Bodenhofer U., A Similarity-Based Generalization of Fuzzy Orderings, (Schriftenreihe der Johannes-Kepler-Universität Linz C 26.) Universitätsverlag Rudolf Trauner, Linz 1999 Zbl1113.03333
- Clifford A. H., 10.2307/2372706, Amer. J. Math. 76 (1954), 631–646 (1954) MR0062118DOI10.2307/2372706
- Baets B. De, Janssens, S., Meyer H. De, Meta-theorems on inequalities for scalar fuzzy set cardinalities, Fuzzy Sets and Systems 157 (2006), 1463–1476 Zbl1106.03046MR2234554
- Baets B. De, Mesiar R., 10.1016/S0165-0114(96)00331-4, Fuzzy Sets and Systems 97 (1998), 211–223 (1998) Zbl0930.03070MR1645614DOI10.1016/S0165-0114(96)00331-4
- Baets B. De, Mesiar R., Ordinal sums of aggregation operators, In: Technologies for Constructing Intelligent Systems (B. Bouchon-Meunier, J. Gutiérrez-Ríos, L. Magdalena, and R. R. Yager, eds.), Vol. 2: Tools, Physica–Verlag, Heidelberg 2002, pp. 137–148 Zbl1015.68194
- Díaz S., Montes, S., Baets B. De, Transitivity bounds in additive fuzzy preference structures, IEEE Trans. Fuzzy Systems, to appear
- Dubois D., Prade H., New results about properties and semantics of fuzzy set-theoretic operators, In: Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems (P. P. Wang and S. K. Chang, eds.), Plenum Press, New York 1980, pp. 59–75 (1980) Zbl0593.04004MR0587634
- Durante F., Sempi C., Semicopulæ, Kybernetika 41 (2005), 3, 315–328 MR2181421
- Genest C., Molina L., Lallena, L., Sempi C., 10.1006/jmva.1998.1809, J. Multivariate Anal. 69 (1999), 193–205 (1999) Zbl0935.62059MR1703371DOI10.1006/jmva.1998.1809
- Janssens S., Baets, B. De, Meyer H. De, Bell-type inequalities for quasi-copulas, Fuzzy Sets and Systems 148 (2004), 263–278 Zbl1057.81011MR2100199
- Jenei S., A note on the ordinal sum theorem and its consequence for the construction of triangular norms, Fuzzy Sets and Systems 126 (2002), 199–205 Zbl0996.03508MR1884686
- Klement E. P., Mesiar, R., Pap E., Triangular Norms, (Trends in Logic. Studia Logica Library 8.) Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
- Klement E. P., Mesiar, R., Pap E., 10.1007/s002330010127, H. Clifford. Semigroup Forum 65 (2002), 71–82 Zbl1007.20054MR1903555DOI10.1007/s002330010127
- Ling C. M., Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212 (1965) MR0190575
- Mayor G., Torrens J., 10.1016/0165-0114(91)90219-G, Fuzzy Sets and Systems 41 (1991), 161–166 (1991) Zbl0739.39006MR1111963DOI10.1016/0165-0114(91)90219-G
- Mesiar R., Saminger S., 10.1007/s00500-003-0315-x, Soft Computing 8 (2004), 562–570 Zbl1066.68127DOI10.1007/s00500-003-0315-x
- Nelsen R. B., 10.1007/978-1-4757-3076-0, (Lecture Notes in Statistics 139.) Springer, New York 1999 Zbl1152.62030MR1653203DOI10.1007/978-1-4757-3076-0
- Saminger S., On ordinal sums of triangular norms on bounded lattices, Fuzzy Sets and Systems 157 (2006), 1406–1416 Zbl1099.06004MR2226983
- Saminger S., Aggregation in Evaluation of Computer-Assisted Assessment, (Schriftenreihe der Johannes-Kepler-Universität Linz C 44.) Universitätsverlag Rudolf Trauner, Linz 2005 Zbl1067.68143
- Saminger S., Mesiar, R., Bodenhofer U., 10.1142/S0218488502001806, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10 (2002), 11–35 Zbl1053.03514MR1962666DOI10.1142/S0218488502001806
- Schweizer B., Sklar A., Probabilistic Metric Spaces, North–Holland, New York 1983 Zbl0546.60010MR0790314
- Tardiff R. M., 10.2140/pjm.1976.65.233, Pacific J. Math. 65 (1976), 233–251 (1976) Zbl0337.54004MR0423315DOI10.2140/pjm.1976.65.233
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.