The covariety of perfect numerical semigroups with fixed Frobenius number
María Ángeles Moreno-Frías; José Carlos Rosales
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 3, page 697-714
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMoreno-Frías, María Ángeles, and Rosales, José Carlos. "The covariety of perfect numerical semigroups with fixed Frobenius number." Czechoslovak Mathematical Journal 74.3 (2024): 697-714. <http://eudml.org/doc/299298>.
@article{Moreno2024,
abstract = {Let $S$ be a numerical semigroup. We say that $h\in \mathbb \{N\} \backslash S$ is an isolated gap of $S$ if $\lbrace h-1,h+1\rbrace \subseteq S.$ A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by $\{\rm m\} (S)$ the multiplicity of a numerical semigroup $S$. A covariety is a nonempty family $\mathcal \{C\}$ of numerical semigroups that fulfills the following conditions: there exists the minimum of $\mathcal \{C\},$ the intersection of two elements of $\mathcal \{C\}$ is again an element of $\mathcal \{C\}$, and $S\backslash \lbrace \{\rm m\}(S)\rbrace \in \mathcal \{C\}$ for all $S\in \mathcal \{C\}$ such that $S\ne \min (\mathcal \{C\}).$ We prove that the set $\mathcal \{P\}(F)=\lbrace S\colon S$ is a perfect numerical semigroup with Frobenius number $F\rbrace $ is a covariety. Also, we describe three algorithms which compute: the set $\mathcal \{P\}(F),$ the maximal elements of $\mathcal \{P\}(F)$, and the elements of $\mathcal \{P\}(F)$ with a given genus. A $\{\rm Parf\}$-semigroup (or $\{\rm Psat\}$-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets $\{\rm Parf\}(F)=\lbrace S\colon S$ is a $\{\rm Parf\}$-numerical semigroup with Frobenius number $F\rbrace $ and $\{\rm Psat\}(F)=\lbrace S\colon S$ is a $\{\rm Psat\}$-numerical semigroup with Frobenius number $F\rbrace $ are covarieties. As a consequence we present some algorithms to compute $\{\rm Parf\}(F)$ and $\{\rm Psat\}(F).$},
author = {Moreno-Frías, María Ángeles, Rosales, José Carlos},
journal = {Czechoslovak Mathematical Journal},
keywords = {perfect numerical semigroup; saturated numerical semigroup; Arf numerical semigroup; covariety; Frobenius number; genus; algorithm},
language = {eng},
number = {3},
pages = {697-714},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The covariety of perfect numerical semigroups with fixed Frobenius number},
url = {http://eudml.org/doc/299298},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Moreno-Frías, María Ángeles
AU - Rosales, José Carlos
TI - The covariety of perfect numerical semigroups with fixed Frobenius number
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 697
EP - 714
AB - Let $S$ be a numerical semigroup. We say that $h\in \mathbb {N} \backslash S$ is an isolated gap of $S$ if $\lbrace h-1,h+1\rbrace \subseteq S.$ A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by ${\rm m} (S)$ the multiplicity of a numerical semigroup $S$. A covariety is a nonempty family $\mathcal {C}$ of numerical semigroups that fulfills the following conditions: there exists the minimum of $\mathcal {C},$ the intersection of two elements of $\mathcal {C}$ is again an element of $\mathcal {C}$, and $S\backslash \lbrace {\rm m}(S)\rbrace \in \mathcal {C}$ for all $S\in \mathcal {C}$ such that $S\ne \min (\mathcal {C}).$ We prove that the set $\mathcal {P}(F)=\lbrace S\colon S$ is a perfect numerical semigroup with Frobenius number $F\rbrace $ is a covariety. Also, we describe three algorithms which compute: the set $\mathcal {P}(F),$ the maximal elements of $\mathcal {P}(F)$, and the elements of $\mathcal {P}(F)$ with a given genus. A ${\rm Parf}$-semigroup (or ${\rm Psat}$-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets ${\rm Parf}(F)=\lbrace S\colon S$ is a ${\rm Parf}$-numerical semigroup with Frobenius number $F\rbrace $ and ${\rm Psat}(F)=\lbrace S\colon S$ is a ${\rm Psat}$-numerical semigroup with Frobenius number $F\rbrace $ are covarieties. As a consequence we present some algorithms to compute ${\rm Parf}(F)$ and ${\rm Psat}(F).$
LA - eng
KW - perfect numerical semigroup; saturated numerical semigroup; Arf numerical semigroup; covariety; Frobenius number; genus; algorithm
UR - http://eudml.org/doc/299298
ER -
References
top- Apéry, R., Sur les branches superlinéaires des courbes algébriques, C.R. Acad. Sci., Paris 222 (1946), 1198-1200 French. (1946) Zbl0061.35404MR0017942
- Arf, C., 10.1112/plms/s2-50.4.256, Proc. Lond. Math. Soc., II. Ser 50 (1948), 256-287 French. (1948) Zbl0031.07002MR0031785DOI10.1112/plms/s2-50.4.256
- Barucci, V., Dobbs, D. E., Fontana, M., 10.1090/memo/0598, Mem. Am. Math. Soc. 598 (1997), 78 pages. (1997) Zbl0868.13003MR1357822DOI10.1090/memo/0598
- Campillo, A., 10.1090/pspum/040.1, Singularities, Part 1 Proceedings of Symposia in Pure Mathematics 40. AMS, Providence (1983), 211-220. (1983) Zbl0553.14013MR0713060DOI10.1090/pspum/040.1
- Delgado, M., García-Sánchez, P. A., Morais, J., NumericalSgps: A package to compute with numerical semigroups, Available at https://www.gap-system.org/Packages/numericalsgps.html, Version 1.3.1 (2022). (2022)
- Mata, M. Delgado de la, Jiménez, C. A. Núñez, Monomial rings and saturated rings, Géométrie algébrique et applications. I Travaux en Cours 22. Hermann, Paris (1987), 23-34. (1987) Zbl0636.14009MR0907904
- Fröberg, R., Gottlieb, G., Häggkvist, R., 10.1007/BF02573091, Semigroup Forum 35 (1987), 63-83. (1987) Zbl0614.10046MR0880351DOI10.1007/BF02573091
- Group, GAP, GAP Groups, Algorithms, Programming -- a System for Computational Discrete Algebra, Available at https://www.gap-system.org/, Version 4.12.2 (2022). (2022)
- Lipman, J., 10.2307/2373463, Am. J. Math. 93 (1971), 649-685. (1971) Zbl0228.13008MR0282969DOI10.2307/2373463
- Moreno-Frías, M. Á., Rosales, J. C., 10.3906/mat-1901-111, Turk. J. Math. 43 (2019), 1742-1754. (2019) Zbl1512.20207MR3962563DOI10.3906/mat-1901-111
- Moreno-Frías, M. Á., Rosales, J. C., 10.55730/1300-0098.3436, Turk. J. Math. 47 (2023), 1392-1405. (2023) Zbl1522.20225MR4623143DOI10.55730/1300-0098.3436
- Moreno-Frías, M. Á., Rosales, J. C., 10.3390/foundations4020016, Foundations 4, (2024), 249-262. (2024) MR4798741DOI10.3390/foundations4020016
- Moreno-Frías, M. Á., Rosales, J. C., 10.1007/s10801-024-01342-x, (to appear) in J. Algebr. Comb. MR4798741DOI10.1007/s10801-024-01342-x
- Núñez, A., 10.1016/0022-4049(89)90135-7, J. Pure Appl. Algebra 59 (1989), 201-214. (1989) Zbl0701.14026MR1007922DOI10.1016/0022-4049(89)90135-7
- Pham, F., Fractions lipschitziennes et saturation de Zariski des algèbres analytiques complexes, Actes du Congrès International des Mathématiciens. Tome 2 Gautier-Villars, Paris (1971), 649-654 French. (1971) Zbl0245.32003MR0590058
- Alfonsín, J. L. Ramírez, 10.1007/BF01300131, Combinatorica 16 (1996), 143-147. (1996) Zbl0847.68036MR1394516DOI10.1007/BF01300131
- Alfonsín, J. L. Ramírez, 10.1093/acprof:oso/9780198568209.001.0001, Oxford Lecture Series in Mathematics and its Applications 30. Oxford University Press, Oxford (2005). (2005) Zbl1134.11012MR2260521DOI10.1093/acprof:oso/9780198568209.001.0001
- Robles-Pérez, A. M., Rosales, J. C., 10.1142/S0219498820501443, J. Algebra Appl. 19 (2020), Article ID 2050144, 10 pages. (2020) Zbl1508.20104MR4131577DOI10.1142/S0219498820501443
- Rosales, J. C., Branco, M. B., 10.1016/S0022-4049(01)00128-1, J. Pure Appl. Algebra 171 (2002), 303-314. (2002) Zbl1006.20043MR1904486DOI10.1016/S0022-4049(01)00128-1
- Rosales, J. C., Branco, M. B., 10.1017/prm.2018.65, Proc. R. Soc. Edinb., Sect. A, Math. 149 (2019), 969-978. (2019) Zbl1484.05019MR3988630DOI10.1017/prm.2018.65
- Rosales, J. C., García-Sánchez, P. A., 10.1007/978-1-4419-0160-6, Developments in Mathematics 20. Springer, New York (2009). (2009) Zbl1220.20047MR2549780DOI10.1007/978-1-4419-0160-6
- Sylvester, J. J., Problem 7382, Mathematical questions, with their solutions, from the Educational Times 41 (1884), page 21. (1884) MR1003160
- Zariski, O., 10.2307/2373462, Am. J. Math. 93 (1971), 573-684. (1971) Zbl0226.13013MR0282972DOI10.2307/2373462
- Zariski, O., 10.2307/2373741, Am. J. Math. 93 (1971), 872-964. (1971) Zbl0228.13007MR0299607DOI10.2307/2373741
- Zariski, O., 10.2307/2373720, Am. J. Math. 97 (1975), 415-502. (1975) Zbl0306.13009MR0389893DOI10.2307/2373720
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.