The covariety of perfect numerical semigroups with fixed Frobenius number

María Ángeles Moreno-Frías; José Carlos Rosales

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 697-714
  • ISSN: 0011-4642

Abstract

top
Let S be a numerical semigroup. We say that h S is an isolated gap of S if { h - 1 , h + 1 } S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m ( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family 𝒞 of numerical semigroups that fulfills the following conditions: there exists the minimum of 𝒞 , the intersection of two elements of 𝒞 is again an element of 𝒞 , and S { m ( S ) } 𝒞 for all S 𝒞 such that S min ( 𝒞 ) . We prove that the set 𝒫 ( F ) = { S : S is a perfect numerical semigroup with Frobenius number F } is a covariety. Also, we describe three algorithms which compute: the set 𝒫 ( F ) , the maximal elements of 𝒫 ( F ) , and the elements of 𝒫 ( F ) with a given genus. A Parf -semigroup (or Psat -semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf ( F ) = { S : S is a Parf -numerical semigroup with Frobenius number F } and Psat ( F ) = { S : S is a Psat -numerical semigroup with Frobenius number F } are covarieties. As a consequence we present some algorithms to compute Parf ( F ) and Psat ( F ) .

How to cite

top

Moreno-Frías, María Ángeles, and Rosales, José Carlos. "The covariety of perfect numerical semigroups with fixed Frobenius number." Czechoslovak Mathematical Journal 74.3 (2024): 697-714. <http://eudml.org/doc/299298>.

@article{Moreno2024,
abstract = {Let $S$ be a numerical semigroup. We say that $h\in \mathbb \{N\} \backslash S$ is an isolated gap of $S$ if $\lbrace h-1,h+1\rbrace \subseteq S.$ A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by $\{\rm m\} (S)$ the multiplicity of a numerical semigroup $S$. A covariety is a nonempty family $\mathcal \{C\}$ of numerical semigroups that fulfills the following conditions: there exists the minimum of $\mathcal \{C\},$ the intersection of two elements of $\mathcal \{C\}$ is again an element of $\mathcal \{C\}$, and $S\backslash \lbrace \{\rm m\}(S)\rbrace \in \mathcal \{C\}$ for all $S\in \mathcal \{C\}$ such that $S\ne \min (\mathcal \{C\}).$ We prove that the set $\mathcal \{P\}(F)=\lbrace S\colon S$ is a perfect numerical semigroup with Frobenius number $F\rbrace $ is a covariety. Also, we describe three algorithms which compute: the set $\mathcal \{P\}(F),$ the maximal elements of $\mathcal \{P\}(F)$, and the elements of $\mathcal \{P\}(F)$ with a given genus. A $\{\rm Parf\}$-semigroup (or $\{\rm Psat\}$-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets $\{\rm Parf\}(F)=\lbrace S\colon S$ is a $\{\rm Parf\}$-numerical semigroup with Frobenius number $F\rbrace $ and $\{\rm Psat\}(F)=\lbrace S\colon S$ is a $\{\rm Psat\}$-numerical semigroup with Frobenius number $F\rbrace $ are covarieties. As a consequence we present some algorithms to compute $\{\rm Parf\}(F)$ and $\{\rm Psat\}(F).$},
author = {Moreno-Frías, María Ángeles, Rosales, José Carlos},
journal = {Czechoslovak Mathematical Journal},
keywords = {perfect numerical semigroup; saturated numerical semigroup; Arf numerical semigroup; covariety; Frobenius number; genus; algorithm},
language = {eng},
number = {3},
pages = {697-714},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The covariety of perfect numerical semigroups with fixed Frobenius number},
url = {http://eudml.org/doc/299298},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Moreno-Frías, María Ángeles
AU - Rosales, José Carlos
TI - The covariety of perfect numerical semigroups with fixed Frobenius number
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 697
EP - 714
AB - Let $S$ be a numerical semigroup. We say that $h\in \mathbb {N} \backslash S$ is an isolated gap of $S$ if $\lbrace h-1,h+1\rbrace \subseteq S.$ A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by ${\rm m} (S)$ the multiplicity of a numerical semigroup $S$. A covariety is a nonempty family $\mathcal {C}$ of numerical semigroups that fulfills the following conditions: there exists the minimum of $\mathcal {C},$ the intersection of two elements of $\mathcal {C}$ is again an element of $\mathcal {C}$, and $S\backslash \lbrace {\rm m}(S)\rbrace \in \mathcal {C}$ for all $S\in \mathcal {C}$ such that $S\ne \min (\mathcal {C}).$ We prove that the set $\mathcal {P}(F)=\lbrace S\colon S$ is a perfect numerical semigroup with Frobenius number $F\rbrace $ is a covariety. Also, we describe three algorithms which compute: the set $\mathcal {P}(F),$ the maximal elements of $\mathcal {P}(F)$, and the elements of $\mathcal {P}(F)$ with a given genus. A ${\rm Parf}$-semigroup (or ${\rm Psat}$-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets ${\rm Parf}(F)=\lbrace S\colon S$ is a ${\rm Parf}$-numerical semigroup with Frobenius number $F\rbrace $ and ${\rm Psat}(F)=\lbrace S\colon S$ is a ${\rm Psat}$-numerical semigroup with Frobenius number $F\rbrace $ are covarieties. As a consequence we present some algorithms to compute ${\rm Parf}(F)$ and ${\rm Psat}(F).$
LA - eng
KW - perfect numerical semigroup; saturated numerical semigroup; Arf numerical semigroup; covariety; Frobenius number; genus; algorithm
UR - http://eudml.org/doc/299298
ER -

References

top
  1. Apéry, R., Sur les branches superlinéaires des courbes algébriques, C.R. Acad. Sci., Paris 222 (1946), 1198-1200 French. (1946) Zbl0061.35404MR0017942
  2. Arf, C., 10.1112/plms/s2-50.4.256, Proc. Lond. Math. Soc., II. Ser 50 (1948), 256-287 French. (1948) Zbl0031.07002MR0031785DOI10.1112/plms/s2-50.4.256
  3. Barucci, V., Dobbs, D. E., Fontana, M., 10.1090/memo/0598, Mem. Am. Math. Soc. 598 (1997), 78 pages. (1997) Zbl0868.13003MR1357822DOI10.1090/memo/0598
  4. Campillo, A., 10.1090/pspum/040.1, Singularities, Part 1 Proceedings of Symposia in Pure Mathematics 40. AMS, Providence (1983), 211-220. (1983) Zbl0553.14013MR0713060DOI10.1090/pspum/040.1
  5. Delgado, M., García-Sánchez, P. A., Morais, J., NumericalSgps: A package to compute with numerical semigroups, Available at https://www.gap-system.org/Packages/numericalsgps.html, Version 1.3.1 (2022). (2022) 
  6. Mata, M. Delgado de la, Jiménez, C. A. Núñez, Monomial rings and saturated rings, Géométrie algébrique et applications. I Travaux en Cours 22. Hermann, Paris (1987), 23-34. (1987) Zbl0636.14009MR0907904
  7. Fröberg, R., Gottlieb, G., Häggkvist, R., 10.1007/BF02573091, Semigroup Forum 35 (1987), 63-83. (1987) Zbl0614.10046MR0880351DOI10.1007/BF02573091
  8. Group, GAP, GAP Groups, Algorithms, Programming -- a System for Computational Discrete Algebra, Available at https://www.gap-system.org/, Version 4.12.2 (2022). (2022) 
  9. Lipman, J., 10.2307/2373463, Am. J. Math. 93 (1971), 649-685. (1971) Zbl0228.13008MR0282969DOI10.2307/2373463
  10. Moreno-Frías, M. Á., Rosales, J. C., 10.3906/mat-1901-111, Turk. J. Math. 43 (2019), 1742-1754. (2019) Zbl1512.20207MR3962563DOI10.3906/mat-1901-111
  11. Moreno-Frías, M. Á., Rosales, J. C., 10.55730/1300-0098.3436, Turk. J. Math. 47 (2023), 1392-1405. (2023) Zbl1522.20225MR4623143DOI10.55730/1300-0098.3436
  12. Moreno-Frías, M. Á., Rosales, J. C., 10.3390/foundations4020016, Foundations 4, (2024), 249-262. (2024) MR4798741DOI10.3390/foundations4020016
  13. Moreno-Frías, M. Á., Rosales, J. C., 10.1007/s10801-024-01342-x, (to appear) in J. Algebr. Comb. MR4798741DOI10.1007/s10801-024-01342-x
  14. Núñez, A., 10.1016/0022-4049(89)90135-7, J. Pure Appl. Algebra 59 (1989), 201-214. (1989) Zbl0701.14026MR1007922DOI10.1016/0022-4049(89)90135-7
  15. Pham, F., Fractions lipschitziennes et saturation de Zariski des algèbres analytiques complexes, Actes du Congrès International des Mathématiciens. Tome 2 Gautier-Villars, Paris (1971), 649-654 French. (1971) Zbl0245.32003MR0590058
  16. Alfonsín, J. L. Ramírez, 10.1007/BF01300131, Combinatorica 16 (1996), 143-147. (1996) Zbl0847.68036MR1394516DOI10.1007/BF01300131
  17. Alfonsín, J. L. Ramírez, 10.1093/acprof:oso/9780198568209.001.0001, Oxford Lecture Series in Mathematics and its Applications 30. Oxford University Press, Oxford (2005). (2005) Zbl1134.11012MR2260521DOI10.1093/acprof:oso/9780198568209.001.0001
  18. Robles-Pérez, A. M., Rosales, J. C., 10.1142/S0219498820501443, J. Algebra Appl. 19 (2020), Article ID 2050144, 10 pages. (2020) Zbl1508.20104MR4131577DOI10.1142/S0219498820501443
  19. Rosales, J. C., Branco, M. B., 10.1016/S0022-4049(01)00128-1, J. Pure Appl. Algebra 171 (2002), 303-314. (2002) Zbl1006.20043MR1904486DOI10.1016/S0022-4049(01)00128-1
  20. Rosales, J. C., Branco, M. B., 10.1017/prm.2018.65, Proc. R. Soc. Edinb., Sect. A, Math. 149 (2019), 969-978. (2019) Zbl1484.05019MR3988630DOI10.1017/prm.2018.65
  21. Rosales, J. C., García-Sánchez, P. A., 10.1007/978-1-4419-0160-6, Developments in Mathematics 20. Springer, New York (2009). (2009) Zbl1220.20047MR2549780DOI10.1007/978-1-4419-0160-6
  22. Sylvester, J. J., Problem 7382, Mathematical questions, with their solutions, from the Educational Times 41 (1884), page 21. (1884) MR1003160
  23. Zariski, O., 10.2307/2373462, Am. J. Math. 93 (1971), 573-684. (1971) Zbl0226.13013MR0282972DOI10.2307/2373462
  24. Zariski, O., 10.2307/2373741, Am. J. Math. 93 (1971), 872-964. (1971) Zbl0228.13007MR0299607DOI10.2307/2373741
  25. Zariski, O., 10.2307/2373720, Am. J. Math. 97 (1975), 415-502. (1975) Zbl0306.13009MR0389893DOI10.2307/2373720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.