Factoring in embedding dimension three numerical semigroups.
Page 1
Aguiló-Gost, F., García-Sánchez, P.A. (2010)
The Electronic Journal of Combinatorics [electronic only]
Einstein, David, Lichtblau, Daniel, Strzebonski, Adam, Wagon, Stan (2007)
Integers
Iskander Aliev, Lenny Fukshansky, Martin Henk (2012)
Acta Arithmetica
Öystein J. Rödseth (1978)
Journal für die reine und angewandte Mathematik
Öystein J. Rödseth (1979)
Journal für die reine und angewandte Mathematik
José Carlos Rosales, P. Vasco (2008)
Mathematica Bohemica
We present an algorithm for computing the greatest integer that is not a solution of the modular Diophantine inequality , with complexity similar to the complexity of the Euclid algorithm for computing the greatest common divisor of two integers.
Delgado, M., Rosales, J.C. (2006)
Portugaliae Mathematica. Nova Série
Marín, J.M., Ramírez Alfonsín, J.L., Revuelta, M.P. (2007)
Integers
Ýlhan, Sedat, Kýper, Ruveyde (2008)
Acta Universitatis Apulensis. Mathematics - Informatics
Tripathi, Amitabha (2010)
Integers
Andreas Strömbergsson (2012)
Acta Arithmetica
María Ángeles Moreno-Frías, José Carlos Rosales (2024)
Czechoslovak Mathematical Journal
Let be a numerical semigroup. We say that is an isolated gap of if A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by the multiplicity of a numerical semigroup . A covariety is a nonempty family of numerical semigroups that fulfills the following conditions: there exists the minimum of the intersection of two elements of is again an element of , and for all such that We prove that the set is a perfect numerical semigroup with...
Ong, Darren C., Ponomarenko, Vadim (2008)
Integers
Shallit, Jeffrey, Stankewicz, James (2011)
Integers
Page 1