Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces

Toshihide Futamura; Tetsu Shimomura

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 905-913
  • ISSN: 0011-4642

Abstract

top
We prove the boundedness of the generalized fractional maximal operator M α and the generalized fractional integral operator I α on weak Choquet spaces with respect to Hausdorff content over quasi-metric measure spaces.

How to cite

top

Futamura, Toshihide, and Shimomura, Tetsu. "Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces." Czechoslovak Mathematical Journal 74.3 (2024): 905-913. <http://eudml.org/doc/299299>.

@article{Futamura2024,
abstract = {We prove the boundedness of the generalized fractional maximal operator $M_\{\alpha \}$ and the generalized fractional integral operator $I_\{\alpha \}$ on weak Choquet spaces with respect to Hausdorff content over quasi-metric measure spaces.},
author = {Futamura, Toshihide, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {fractional integral operator; quasi-metric measure space; Hausdorff content; weak Choquet space; Ahlfors regular},
language = {eng},
number = {3},
pages = {905-913},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces},
url = {http://eudml.org/doc/299299},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Futamura, Toshihide
AU - Shimomura, Tetsu
TI - Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 905
EP - 913
AB - We prove the boundedness of the generalized fractional maximal operator $M_{\alpha }$ and the generalized fractional integral operator $I_{\alpha }$ on weak Choquet spaces with respect to Hausdorff content over quasi-metric measure spaces.
LA - eng
KW - fractional integral operator; quasi-metric measure space; Hausdorff content; weak Choquet space; Ahlfors regular
UR - http://eudml.org/doc/299299
ER -

References

top
  1. Adams, D. R., 10.1007/BFb0078867, Function Spaces and Applications Lecture Notes in Mathematics 1302. Springer, Berlin (1988), 115-124. (1988) Zbl0658.31009MR0942261DOI10.1007/BFb0078867
  2. Adams, D. R., 10.5565/PUBLMAT_42198_01, Publ. Mat., Barc. 42 (1998), 3-66. (1998) Zbl0923.31006MR1628134DOI10.5565/PUBLMAT_42198_01
  3. Björn, A., Björn, J., 10.4171/099, EMS Tracts in Mathematics 17. EMS Press, Zürich (2011). (2011) Zbl1231.31001MR2867756DOI10.4171/099
  4. Hajłasz, P., Koskela, P., 10.1090/memo/0688, Mem. Am. Math. Soc. 145 (2000), 101 pages. (2000) Zbl0954.46022MR1683160DOI10.1090/memo/0688
  5. Hatano, N., Kawasumi, R., Saito, H., Tanaka, H., 10.1017/S000497272400011X, (to appear) in Bull. Aust. Math. Soc. MR4803163DOI10.1017/S000497272400011X
  6. Hedberg, L. I., 10.1090/S0002-9939-1972-0312232-4, Proc. Am. Math. Soc. 36 (1972), 505-510. (1972) Zbl0283.26003MR0312232DOI10.1090/S0002-9939-1972-0312232-4
  7. Heinonen, J., 10.1007/978-1-4613-0131-8, Universitext. Springer, New York (2001). (2001) Zbl0985.46008MR1800917DOI10.1007/978-1-4613-0131-8
  8. Kairema, A., 10.5565/PUBLMAT_57113_01, Publ. Mat., Barc. 57 (2013), 3-56. (2013) Zbl1284.42055MR3058926DOI10.5565/PUBLMAT_57113_01
  9. Mizuta, Y., Shimomura, T., Sobukawa, T., Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces, Osaka J. Math. 46 (2009), 255-271. (2009) Zbl1186.31003MR2531149
  10. Orobitg, J., Verdera, J., 10.1112/S0024609397003688, Bull. Lond. Math. Soc. 30 (1998), 145-150. (1998) Zbl0921.42016MR1489325DOI10.1112/S0024609397003688
  11. Sawano, Y., Shimomura, T., 10.1007/s00025-021-01490-7, Result. Math. 76 (2021), Article ID 188, 22 pages. (2021) Zbl1479.42055MR4305494DOI10.1007/s00025-021-01490-7
  12. Watanabe, H., Estimates of fractional maximal functions in a quasi-metric space, Nat. Sci. Rep. Ochanomizu Univ. 56 (2006), 21-31. (2006) Zbl1113.42018MR2214968
  13. Watanabe, H., 10.2969/aspm/04410377, Potential Theory in Matsue Advanced Studies in Pure Mathematics 44. Mathematical Society of Japan, Tokyo (2006), 377-389. (2006) Zbl1125.42008MR2279770DOI10.2969/aspm/04410377

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.