Area differences under analytic maps and operators

Mehmet Çelik; Luke Duane-Tessier; Ashley Marcial Rodriguez; Daniel Rodriguez; Aden Shaw

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 817-838
  • ISSN: 0011-4642

Abstract

top
Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping h and that of z h , we study various L 2 norms for T ϕ ( h ) , where T ϕ is the Toeplitz operator with symbol ϕ . In Theorem , given polynomials p and q we find a symbol ϕ such that T ϕ ( p ) = q . We extend some of our results to the polydisc.

How to cite

top

Çelik, Mehmet, et al. "Area differences under analytic maps and operators." Czechoslovak Mathematical Journal 74.3 (2024): 817-838. <http://eudml.org/doc/299309>.

@article{Çelik2024,
abstract = {Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping $h$ and that of $zh$, we study various $L^2$ norms for $T_\{\varphi \}(h)$, where $T_\{\varphi \}$ is the Toeplitz operator with symbol $\varphi $. In Theorem , given polynomials $p$ and $q$ we find a symbol $\varphi $ such that $T_\{\varphi \}(p)=q$. We extend some of our results to the polydisc.},
author = {Çelik, Mehmet, Duane-Tessier, Luke, Marcial Rodriguez, Ashley, Rodriguez, Daniel, Shaw, Aden},
journal = {Czechoslovak Mathematical Journal},
keywords = {unit disk; polydisc; polynomial; Toeplitz operator; Bergman projection},
language = {eng},
number = {3},
pages = {817-838},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Area differences under analytic maps and operators},
url = {http://eudml.org/doc/299309},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Çelik, Mehmet
AU - Duane-Tessier, Luke
AU - Marcial Rodriguez, Ashley
AU - Rodriguez, Daniel
AU - Shaw, Aden
TI - Area differences under analytic maps and operators
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 817
EP - 838
AB - Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping $h$ and that of $zh$, we study various $L^2$ norms for $T_{\varphi }(h)$, where $T_{\varphi }$ is the Toeplitz operator with symbol $\varphi $. In Theorem , given polynomials $p$ and $q$ we find a symbol $\varphi $ such that $T_{\varphi }(p)=q$. We extend some of our results to the polydisc.
LA - eng
KW - unit disk; polydisc; polynomial; Toeplitz operator; Bergman projection
UR - http://eudml.org/doc/299309
ER -

References

top
  1. Ahlfors, L., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, AMS Chelsea Publishing 385. AMS, Providence (2021). (2021) Zbl1477.30001MR4506522
  2. Bambico, H. K., Çelik, M., Gross, S. T., Hall, F., Generalization of the excess area and its geometric interpretation, New York J. Math. 28 (2022), 1230-1255. (2022) Zbl1503.31001MR4474183
  3. Bell, S. R., 10.2307/1971379, Ann. Math. (2) 114 (1981), 103-113. (1981) Zbl0423.32009MR625347DOI10.2307/1971379
  4. Bell, S., Catlin, D., 10.1215/S0012-7094-82-04924-9, Duke Math. J. 49 (1982), 385-396. (1982) Zbl0475.32011MR659947DOI10.1215/S0012-7094-82-04924-9
  5. Boas, H. P., 10.2140/pjm.1984.112.273, Pac. J. Math. 112 (1984), 273-292. (1984) Zbl0497.32021MR743985DOI10.2140/pjm.1984.112.273
  6. Chen, S.-C., Shaw, M.-C., 10.1090/amsip/019, AMS/IP Studies in Advanced Mathematics 19. AMS, Providence (2001). (2001) Zbl0963.32001MR1800297DOI10.1090/amsip/019
  7. Conway, J. B., 10.1007/978-1-4615-9972-2, Graduate Texts in Mathematics 11. Springer, Berlin (1978). (1978) Zbl0277.30001MR503901DOI10.1007/978-1-4615-9972-2
  8. D'Angelo, J. P., 10.5948/UPO9780883859704, The Carus Mathematical Monographs 28. Mathematical Association of America, Washington (2002). (2002) Zbl0996.30001MR1899123DOI10.5948/UPO9780883859704
  9. D'Angelo, J. P., 10.1007/978-3-030-16514-7, Cornerstones. Springer, Cham (2019). (2019) Zbl1428.42001MR3931729DOI10.1007/978-3-030-16514-7
  10. Diederich, K., Fornaess, J. E., 10.1007/BF01398927, Invent. Math. 67 (1982), 363-384. (1982) Zbl0501.32010MR664111DOI10.1007/BF01398927
  11. Folland, G. B., 10.1515/9780691213033, Princeton University Press, Princeton (1995). (1995) Zbl0841.35001MR1357411DOI10.1515/9780691213033
  12. Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics. John Wiley & Sons, New York (1999). (1999) Zbl0924.28001MR1681462
  13. Greene, R. E., Krantz, S. G., 10.1090/gsm/040, Graduate Studies in Mathematics 40. AMS, Providence (2006). (2006) Zbl1114.30001MR2215872DOI10.1090/gsm/040
  14. Hedenmalm, H., Korenblum, B., Zhu, K., 10.1007/978-1-4612-0497-8, Graduate Texts in Mathematics 199. Springer, Berlin (2000). (2000) Zbl0955.32003MR1758653DOI10.1007/978-1-4612-0497-8
  15. Hewitt, E., Stromberg, K., 10.1007/978-3-642-88044-5, Graduate Texts in Mathematics 25. Springer, Berlin (1975). (1975) Zbl0307.28001MR367121DOI10.1007/978-3-642-88044-5
  16. Krantz, S. G., 10.1090/chel/340, AMS, Providence (2001). (2001) Zbl1087.32001MR1846625DOI10.1090/chel/340
  17. Ravisankar, S., Zeytuncu, Y. E., 10.1142/S0129167X16500877, Int. J. Math. 27 (2016), Article ID 1650087, 10 pages. (2016) Zbl1367.32006MR3570372DOI10.1142/S0129167X16500877
  18. Straube, E. J., 10.1007/BF01162025, Math. Z. 192 (1986), 117-128. (1986) Zbl0573.46018MR835396DOI10.1007/BF01162025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.