The search session has expired. Please query the service again.
We investigate the Banach manifold consisting of complex functions on the unit disc having boundary values in a given one-dimensional submanifold of the plane. We show that ∂/∂λ̅ restricted to that submanifold is a Fredholm mapping. Moreover, for any such function we obtain a relation between its homotopy class and the Fredholm index.
Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping and that of , we study various norms for , where is the Toeplitz operator with symbol . In Theorem , given polynomials and we find a symbol such that . We extend some of our results to the polydisc.
We study a correspondence L between some classes of functions holomorphic in the unit disc and functions holomorphic in the left halfplane. This correspondence is such that for every f and w ∈ ℍ, exp(L(f)(w)) = f(expw). In particular, we prove that the famous class S of univalent functions on the unit disc is homeomorphic via L to the class S(ℍ) of all univalent functions g on ℍ for which g(w+2πi) = g(w) + 2πi and .
The topology of the maximal-ideal space of is discussed.
Currently displaying 1 –
4 of
4