Some Hölder-logarithmic estimates on Hardy-Sobolev spaces

Imed Feki; Ameni Massoudi

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 787-800
  • ISSN: 0011-4642

Abstract

top
We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces H k , p ( G ) , where k * , 1 p and G is either the open unit disk 𝔻 or the annular domain G s , 0 < s < 1 of the complex space . More precisely, we study the behavior on the interior of G of any function f belonging to the unit ball of the Hardy-Sobolev spaces H k , p ( G ) from its behavior on any open connected subset I of the boundary G of G with respect to the L 1 -norm. Our results can be viewed as an improvement and generalization of those established in S. Chaabane, I. Feki (2009), I. Feki, H. Nfata, F. Wielonsky (2012), I. Feki (2013), I. Feki, H. Nfata (2014). As an application, we establish a logarithmic stability results for the Cauchy problem of the identification of Robin’s coefficient by boundary measurements.

How to cite

top

Feki, Imed, and Massoudi, Ameni. "Some Hölder-logarithmic estimates on Hardy-Sobolev spaces." Czechoslovak Mathematical Journal 74.3 (2024): 787-800. <http://eudml.org/doc/299310>.

@article{Feki2024,
abstract = {We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces $H^\{k,p\}(G)$, where $k \in \{\mathbb \{N\}\}^*$, $1\le p\le \infty $ and $G$ is either the open unit disk $\{\mathbb \{D\}\}$ or the annular domain $G_s$, $0<s<1$ of the complex space $\{\mathbb \{C\}\}$. More precisely, we study the behavior on the interior of $G$ of any function $f$ belonging to the unit ball of the Hardy-Sobolev spaces $H^\{k,p\}(G)$ from its behavior on any open connected subset $I$ of the boundary $\partial G$ of $G$ with respect to the $L^1$-norm. Our results can be viewed as an improvement and generalization of those established in S. Chaabane, I. Feki (2009), I. Feki, H. Nfata, F. Wielonsky (2012), I. Feki (2013), I. Feki, H. Nfata (2014). As an application, we establish a logarithmic stability results for the Cauchy problem of the identification of Robin’s coefficient by boundary measurements.},
author = {Feki, Imed, Massoudi, Ameni},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hardy-Sobolev space; annular domain; Kernel function},
language = {eng},
number = {3},
pages = {787-800},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some Hölder-logarithmic estimates on Hardy-Sobolev spaces},
url = {http://eudml.org/doc/299310},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Feki, Imed
AU - Massoudi, Ameni
TI - Some Hölder-logarithmic estimates on Hardy-Sobolev spaces
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 787
EP - 800
AB - We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces $H^{k,p}(G)$, where $k \in {\mathbb {N}}^*$, $1\le p\le \infty $ and $G$ is either the open unit disk ${\mathbb {D}}$ or the annular domain $G_s$, $0<s<1$ of the complex space ${\mathbb {C}}$. More precisely, we study the behavior on the interior of $G$ of any function $f$ belonging to the unit ball of the Hardy-Sobolev spaces $H^{k,p}(G)$ from its behavior on any open connected subset $I$ of the boundary $\partial G$ of $G$ with respect to the $L^1$-norm. Our results can be viewed as an improvement and generalization of those established in S. Chaabane, I. Feki (2009), I. Feki, H. Nfata, F. Wielonsky (2012), I. Feki (2013), I. Feki, H. Nfata (2014). As an application, we establish a logarithmic stability results for the Cauchy problem of the identification of Robin’s coefficient by boundary measurements.
LA - eng
KW - Hardy-Sobolev space; annular domain; Kernel function
UR - http://eudml.org/doc/299310
ER -

References

top
  1. Alessandrini, G., Piere, L. Del, Rondi, L., 10.1088/0266-5611/19/4/312, Inverse Probl. 19 (2003), 973-984. (2003) Zbl1050.35134MR2005313DOI10.1088/0266-5611/19/4/312
  2. Baratchart, L., Mandréa, F., Saff, E. B., Wielonsky, F., 10.1016/j.matpur.2005.12.001, J. Math. Pures Appl. (9) 86 (2006), 1-41. (2006) Zbl1106.35129MR2246355DOI10.1016/j.matpur.2005.12.001
  3. Baratchart, L., Zerner, M., 10.1016/0377-0427(93)90300-Z, J. Comput. Appl. Math. 46 (1993), 255-269. (1993) Zbl0818.65017MR1222486DOI10.1016/0377-0427(93)90300-Z
  4. Chaabane, S., Feki, I., 10.1016/j.crma.2009.07.018, C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. (2009) Zbl1181.46023MR2554565DOI10.1016/j.crma.2009.07.018
  5. Chalendar, I., Partington, J. R., 10.4064/sm-136-3-255-269, Stud. Math. 136 (1999), 255-269. (1999) Zbl0952.30033MR1724247DOI10.4064/sm-136-3-255-269
  6. Chevreau, B., Pearcy, C. M., Shields, A. L., Finitely connected domains G , representations of H ( G ) , and invariant subspaces, J. Oper. Theory 6 (1981), 375-405. (1981) Zbl0525.47004MR0643698
  7. Duren, P. L., 10.1016/s0079-8169(08)x6157-4, Pure and Applied Mathematics 38. Academic Press, New York (1970). (1970) Zbl0215.20203MR0268655DOI10.1016/s0079-8169(08)x6157-4
  8. Feki, I., 10.1007/s10587-013-0032-2, Czech. Math. J. 63 (2013), 481-495. (2013) Zbl1289.30231MR3073973DOI10.1007/s10587-013-0032-2
  9. Feki, I., Nfata, H., 10.1016/j.jmaa.2014.05.042, J. Math. Anal. Appl. 419 (2014), 1248-1260. (2014) Zbl1293.30073MR3225432DOI10.1016/j.jmaa.2014.05.042
  10. Feki, I., Nfata, H., Wielonsky, F., 10.1016/j.jmaa.2012.05.055, J. Math. Anal. Appl. 395 (2012), 366-375. (2012) Zbl1250.30051MR2943628DOI10.1016/j.jmaa.2012.05.055
  11. Hardy, G. H., 10.1112/plms/s2_14.1.269, Proc. Lond. Math. Soc. (2) 14 (1915), 269-277 9999JFM99999 45.1331.03. (1915) DOI10.1112/plms/s2_14.1.269
  12. Leblond, J., Mahjoub, M., Partington, J. R., 10.1515/156939406777571049, J. Inverse Ill-Posed Probl. 14 (2006), 189-204. (2006) Zbl1111.35121MR2242304DOI10.1515/156939406777571049
  13. Meftahi, H., Wielonsky, F., 10.1016/j.jmaa.2009.04.040, J. Math. Anal. Appl. 358 (2009), 98-109. (2009) Zbl1176.46029MR2527584DOI10.1016/j.jmaa.2009.04.040
  14. Miller, P. D., 10.1090/gsm/075, Graduate Studies in Mathematics 75. AMS, Providence (2006). (2006) Zbl1101.41031MR2238098DOI10.1090/gsm/075
  15. Nirenberg, L., An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. (1966) Zbl0163.29905MR0208360
  16. Rudin, W., 10.1090/S0002-9947-1955-0067993-3, Trans. Am. Math. Soc. 78 (1955), 46-66. (1955) Zbl0064.31203MR0067993DOI10.1090/S0002-9947-1955-0067993-3
  17. Sarason, D., 10.1090/memo/0056, Mem. Am. Math. Soc. 56 (1965), 78 pages. (1965) Zbl0127.07002MR0188824DOI10.1090/memo/0056
  18. Wang, H.-C., 10.1017/S0004972700011515, Bull. Austr. Math. Soc. 27 (1983), 91-105. (1983) Zbl0512.42023MR0696647DOI10.1017/S0004972700011515

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.