On linear maps leaving invariant the copositive/completely positive cones

Sachindranath Jayaraman; Vatsalkumar N. Mer

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 801-815
  • ISSN: 0011-4642

Abstract

top
The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices 𝒮 n that leave invariant the closed convex cones of copositive and completely positive matrices ( COP n and CP n ). A description of an invertible linear map on 𝒮 n such that L ( CP n ) C P n is obtained in terms of semipositive maps over the positive semidefinite cone 𝒮 + n and the cone of symmetric nonnegative matrices 𝒩 + n for n 4 , with specific calculations for n = 2 . Preserver properties of the Lyapunov map X A X + X A t , the generalized Lyapunov map X A X B + B t X A t , and the structure of the dual of the cone π ( CP n ) (for n 4 ) are brought out. We also highlight a different way to determine the structure of an invertible linear map on 𝒮 2 that leaves invariant the closed convex cone 𝒮 + 2 .

How to cite

top

Jayaraman, Sachindranath, and Mer, Vatsalkumar N.. "On linear maps leaving invariant the copositive/completely positive cones." Czechoslovak Mathematical Journal 74.3 (2024): 801-815. <http://eudml.org/doc/299313>.

@article{Jayaraman2024,
abstract = {The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices $\mathcal \{S\}^n$ that leave invariant the closed convex cones of copositive and completely positive matrices ($\{\rm COP\}_n$ and $\{\rm CP\}_n$). A description of an invertible linear map on $\mathcal \{S\}^n$ such that $L(\{\rm CP\}_n) \subset CP_n$ is obtained in terms of semipositive maps over the positive semidefinite cone $\mathcal \{S\}^n_+$ and the cone of symmetric nonnegative matrices $\mathcal \{N\}^n_+$ for $n \le 4$, with specific calculations for $n=2$. Preserver properties of the Lyapunov map $X \mapsto AX + XA^t$, the generalized Lyapunov map $X \mapsto AXB + B^tXA^t$, and the structure of the dual of the cone $\pi (\{\rm CP\} _n)$ (for $n \le 4$) are brought out. We also highlight a different way to determine the structure of an invertible linear map on $\mathcal \{S\}^2$ that leaves invariant the closed convex cone $\mathcal \{S\}^2_+$.},
author = {Jayaraman, Sachindranath, Mer, Vatsalkumar N.},
journal = {Czechoslovak Mathematical Journal},
keywords = {completely positive/copositive matrix; proper cone; semipositive matrix; positive semidefinite matrix; linear preserver problem},
language = {eng},
number = {3},
pages = {801-815},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On linear maps leaving invariant the copositive/completely positive cones},
url = {http://eudml.org/doc/299313},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Jayaraman, Sachindranath
AU - Mer, Vatsalkumar N.
TI - On linear maps leaving invariant the copositive/completely positive cones
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 801
EP - 815
AB - The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices $\mathcal {S}^n$ that leave invariant the closed convex cones of copositive and completely positive matrices (${\rm COP}_n$ and ${\rm CP}_n$). A description of an invertible linear map on $\mathcal {S}^n$ such that $L({\rm CP}_n) \subset CP_n$ is obtained in terms of semipositive maps over the positive semidefinite cone $\mathcal {S}^n_+$ and the cone of symmetric nonnegative matrices $\mathcal {N}^n_+$ for $n \le 4$, with specific calculations for $n=2$. Preserver properties of the Lyapunov map $X \mapsto AX + XA^t$, the generalized Lyapunov map $X \mapsto AXB + B^tXA^t$, and the structure of the dual of the cone $\pi ({\rm CP} _n)$ (for $n \le 4$) are brought out. We also highlight a different way to determine the structure of an invertible linear map on $\mathcal {S}^2$ that leaves invariant the closed convex cone $\mathcal {S}^2_+$.
LA - eng
KW - completely positive/copositive matrix; proper cone; semipositive matrix; positive semidefinite matrix; linear preserver problem
UR - http://eudml.org/doc/299313
ER -

References

top
  1. Cain, B., Hershkowitz, D., Schneider, H., 10.1023/A:1022463518098, Czech. Math. J. 47 (1997), 487-499. (1997) Zbl0902.15011MR1461427DOI10.1023/A:1022463518098
  2. Chandrashekaran, A., Jayaraman, S., Mer, V. N., 10.13001/1081-3810.3733, Electron. J. Linear Algebra 34 (2018), 304-319. (2018) Zbl1398.15037MR3841397DOI10.13001/1081-3810.3733
  3. Chandrashekaran, A., Jayaraman, S., Mer, V. N., 10.1007/s13226-020-0442-4, Indian J. Pure Appl. Math. 51 (2020), 935-944. (2020) Zbl1456.15029MR4159333DOI10.1007/s13226-020-0442-4
  4. Choi, M.-D., 10.1016/0024-3795(75)90075-0, Linear Algebra Appl. 10 (1975), 285-290. (1975) Zbl0327.15018MR0376726DOI10.1016/0024-3795(75)90075-0
  5. Furtado, S., Johnson, C. R., Zhang, Y., 10.1080/03081087.2019.1692775, Linear Multilinear Algebra 69 (2021), 1779-1788. (2021) Zbl1472.15040MR4279156DOI10.1080/03081087.2019.1692775
  6. Gowda, M. S., 10.13001/1081-3810.1515, Electron. J. Linear Algebra 23 (2012), 198-211. (2012) Zbl1302.15043MR2889582DOI10.13001/1081-3810.1515
  7. Gowda, M. S., Song, Y. J., Sivakumar, K. C., 10.1007/s10479-017-2439-x, Ann. Oper. Res. 287 (2020), 727-736. (2020) Zbl1444.47077MR4076137DOI10.1007/s10479-017-2439-x
  8. Gowda, M. S., Sznajder, R., 10.13001/1081-3810.1648, Electron. J. Linear Algebra 26 (2013), 177-191. (2013) Zbl1283.15104MR3065857DOI10.13001/1081-3810.1648
  9. Gowda, M. S., Sznajder, R., Tao, J., 10.1016/j.laa.2011.10.006, Linear Algebra Appl. 438 (2013), 3862-3871. (2013) Zbl1286.22007MR3034504DOI10.1016/j.laa.2011.10.006
  10. Johnson, C. R., Smith, R. L., Tsatsomeros, M. J., 10.1017/9781108778619, Cambridge Tracts in Mathematics 221. Cambridge University Press, Cambridge (2020). (2020) Zbl1469.15002MR4411340DOI10.1017/9781108778619
  11. Loewy, R., Schneider, H., 10.1016/0022-247X(75)90186-9, J. Math. Anal. Appl. 49 (1975), 375-392. (1975) Zbl0308.15011MR0407654DOI10.1016/0022-247X(75)90186-9
  12. Orlitzky, M. J., 10.13001/1081-3810.3782, Electron. J. Linear Algebra 34 (2018), 444-458. (2018) Zbl1398.15040MR3871891DOI10.13001/1081-3810.3782
  13. Pierce, S., al., et, 10.1080/03081089208818176, Linear Multilinear Algebra 33 (1992), 1-129. (1992) MR1346777DOI10.1080/03081089208818176
  14. Shaked-Monderer, N., Berman, A., 10.1142/11386, World Scientific, Hackensack (2021). (2021) Zbl1459.15002MR4274598DOI10.1142/11386
  15. Shanmugapriya, A., Chandrashekaran, A., 10.1007/s41478-023-00573-8, J. Anal. 32 (2024), 19-26. (2024) MR4706938DOI10.1007/s41478-023-00573-8
  16. Shitov, Y., 10.1090/proc/15432, Proc. Am. Math. Soc. 149 (2021), 3173-3176. (2021) Zbl1473.15031MR4273125DOI10.1090/proc/15432
  17. Sznajder, R., 10.1007/s10957-022-02118-8, J. Optim. Theory Appl. 202 (2024), 296-302. (2024) MR4775763DOI10.1007/s10957-022-02118-8
  18. Tam, B.-S., 10.1016/0024-3795(92)90339-C, Linear Algebra Appl. 167 (1992), 65-85. (1992) Zbl0755.15010MR1155442DOI10.1016/0024-3795(92)90339-C

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.