On linear maps leaving invariant the copositive/completely positive cones
Sachindranath Jayaraman; Vatsalkumar N. Mer
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 3, page 801-815
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJayaraman, Sachindranath, and Mer, Vatsalkumar N.. "On linear maps leaving invariant the copositive/completely positive cones." Czechoslovak Mathematical Journal 74.3 (2024): 801-815. <http://eudml.org/doc/299313>.
@article{Jayaraman2024,
abstract = {The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices $\mathcal \{S\}^n$ that leave invariant the closed convex cones of copositive and completely positive matrices ($\{\rm COP\}_n$ and $\{\rm CP\}_n$). A description of an invertible linear map on $\mathcal \{S\}^n$ such that $L(\{\rm CP\}_n) \subset CP_n$ is obtained in terms of semipositive maps over the positive semidefinite cone $\mathcal \{S\}^n_+$ and the cone of symmetric nonnegative matrices $\mathcal \{N\}^n_+$ for $n \le 4$, with specific calculations for $n=2$. Preserver properties of the Lyapunov map $X \mapsto AX + XA^t$, the generalized Lyapunov map $X \mapsto AXB + B^tXA^t$, and the structure of the dual of the cone $\pi (\{\rm CP\} _n)$ (for $n \le 4$) are brought out. We also highlight a different way to determine the structure of an invertible linear map on $\mathcal \{S\}^2$ that leaves invariant the closed convex cone $\mathcal \{S\}^2_+$.},
author = {Jayaraman, Sachindranath, Mer, Vatsalkumar N.},
journal = {Czechoslovak Mathematical Journal},
keywords = {completely positive/copositive matrix; proper cone; semipositive matrix; positive semidefinite matrix; linear preserver problem},
language = {eng},
number = {3},
pages = {801-815},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On linear maps leaving invariant the copositive/completely positive cones},
url = {http://eudml.org/doc/299313},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Jayaraman, Sachindranath
AU - Mer, Vatsalkumar N.
TI - On linear maps leaving invariant the copositive/completely positive cones
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 801
EP - 815
AB - The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices $\mathcal {S}^n$ that leave invariant the closed convex cones of copositive and completely positive matrices (${\rm COP}_n$ and ${\rm CP}_n$). A description of an invertible linear map on $\mathcal {S}^n$ such that $L({\rm CP}_n) \subset CP_n$ is obtained in terms of semipositive maps over the positive semidefinite cone $\mathcal {S}^n_+$ and the cone of symmetric nonnegative matrices $\mathcal {N}^n_+$ for $n \le 4$, with specific calculations for $n=2$. Preserver properties of the Lyapunov map $X \mapsto AX + XA^t$, the generalized Lyapunov map $X \mapsto AXB + B^tXA^t$, and the structure of the dual of the cone $\pi ({\rm CP} _n)$ (for $n \le 4$) are brought out. We also highlight a different way to determine the structure of an invertible linear map on $\mathcal {S}^2$ that leaves invariant the closed convex cone $\mathcal {S}^2_+$.
LA - eng
KW - completely positive/copositive matrix; proper cone; semipositive matrix; positive semidefinite matrix; linear preserver problem
UR - http://eudml.org/doc/299313
ER -
References
top- Cain, B., Hershkowitz, D., Schneider, H., 10.1023/A:1022463518098, Czech. Math. J. 47 (1997), 487-499. (1997) Zbl0902.15011MR1461427DOI10.1023/A:1022463518098
- Chandrashekaran, A., Jayaraman, S., Mer, V. N., 10.13001/1081-3810.3733, Electron. J. Linear Algebra 34 (2018), 304-319. (2018) Zbl1398.15037MR3841397DOI10.13001/1081-3810.3733
- Chandrashekaran, A., Jayaraman, S., Mer, V. N., 10.1007/s13226-020-0442-4, Indian J. Pure Appl. Math. 51 (2020), 935-944. (2020) Zbl1456.15029MR4159333DOI10.1007/s13226-020-0442-4
- Choi, M.-D., 10.1016/0024-3795(75)90075-0, Linear Algebra Appl. 10 (1975), 285-290. (1975) Zbl0327.15018MR0376726DOI10.1016/0024-3795(75)90075-0
- Furtado, S., Johnson, C. R., Zhang, Y., 10.1080/03081087.2019.1692775, Linear Multilinear Algebra 69 (2021), 1779-1788. (2021) Zbl1472.15040MR4279156DOI10.1080/03081087.2019.1692775
- Gowda, M. S., 10.13001/1081-3810.1515, Electron. J. Linear Algebra 23 (2012), 198-211. (2012) Zbl1302.15043MR2889582DOI10.13001/1081-3810.1515
- Gowda, M. S., Song, Y. J., Sivakumar, K. C., 10.1007/s10479-017-2439-x, Ann. Oper. Res. 287 (2020), 727-736. (2020) Zbl1444.47077MR4076137DOI10.1007/s10479-017-2439-x
- Gowda, M. S., Sznajder, R., 10.13001/1081-3810.1648, Electron. J. Linear Algebra 26 (2013), 177-191. (2013) Zbl1283.15104MR3065857DOI10.13001/1081-3810.1648
- Gowda, M. S., Sznajder, R., Tao, J., 10.1016/j.laa.2011.10.006, Linear Algebra Appl. 438 (2013), 3862-3871. (2013) Zbl1286.22007MR3034504DOI10.1016/j.laa.2011.10.006
- Johnson, C. R., Smith, R. L., Tsatsomeros, M. J., 10.1017/9781108778619, Cambridge Tracts in Mathematics 221. Cambridge University Press, Cambridge (2020). (2020) Zbl1469.15002MR4411340DOI10.1017/9781108778619
- Loewy, R., Schneider, H., 10.1016/0022-247X(75)90186-9, J. Math. Anal. Appl. 49 (1975), 375-392. (1975) Zbl0308.15011MR0407654DOI10.1016/0022-247X(75)90186-9
- Orlitzky, M. J., 10.13001/1081-3810.3782, Electron. J. Linear Algebra 34 (2018), 444-458. (2018) Zbl1398.15040MR3871891DOI10.13001/1081-3810.3782
- Pierce, S., al., et, 10.1080/03081089208818176, Linear Multilinear Algebra 33 (1992), 1-129. (1992) MR1346777DOI10.1080/03081089208818176
- Shaked-Monderer, N., Berman, A., 10.1142/11386, World Scientific, Hackensack (2021). (2021) Zbl1459.15002MR4274598DOI10.1142/11386
- Shanmugapriya, A., Chandrashekaran, A., 10.1007/s41478-023-00573-8, J. Anal. 32 (2024), 19-26. (2024) MR4706938DOI10.1007/s41478-023-00573-8
- Shitov, Y., 10.1090/proc/15432, Proc. Am. Math. Soc. 149 (2021), 3173-3176. (2021) Zbl1473.15031MR4273125DOI10.1090/proc/15432
- Sznajder, R., 10.1007/s10957-022-02118-8, J. Optim. Theory Appl. 202 (2024), 296-302. (2024) MR4775763DOI10.1007/s10957-022-02118-8
- Tam, B.-S., 10.1016/0024-3795(92)90339-C, Linear Algebra Appl. 167 (1992), 65-85. (1992) Zbl0755.15010MR1155442DOI10.1016/0024-3795(92)90339-C
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.