Theorems of the alternative for cones and Lyapunov regularity of matrices
Bryan Cain; Daniel Hershkowitz; Hans Schneider
Czechoslovak Mathematical Journal (1997)
- Volume: 47, Issue: 3, page 487-499
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCain, Bryan, Hershkowitz, Daniel, and Schneider, Hans. "Theorems of the alternative for cones and Lyapunov regularity of matrices." Czechoslovak Mathematical Journal 47.3 (1997): 487-499. <http://eudml.org/doc/30378>.
@article{Cain1997,
abstract = {Standard facts about separating linear functionals will be used to determine how two cones $C$ and $D$ and their duals $C^*$ and $D^*$ may overlap. When $T\:V\rightarrow W$ is linear and $K \subset V$ and $D\subset W$ are cones, these results will be applied to $C=T(K)$ and $D$, giving a unified treatment of several theorems of the alternate which explain when $C$ contains an interior point of $D$. The case when $V=W$ is the space $H$ of $n\times n$ Hermitian matrices, $D$ is the $n\times n$ positive semidefinite matrices, and $T(X) = AX + X^*A$ yields new and known results about the existence of block diagonal $X$’s satisfying the Lyapunov condition: $T(X)$ is an interior point of $D$. For the same $V$, $W$ and $D$, $ T(X)=X-B^*XB$ will be studied for certain cones $K$ of entry-wise nonnegative $X$’s.},
author = {Cain, Bryan, Hershkowitz, Daniel, Schneider, Hans},
journal = {Czechoslovak Mathematical Journal},
keywords = {cones; theorems of the alternative; positive semidefinite matrices; Lyapunov regularity; Lyapunov stability},
language = {eng},
number = {3},
pages = {487-499},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Theorems of the alternative for cones and Lyapunov regularity of matrices},
url = {http://eudml.org/doc/30378},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Cain, Bryan
AU - Hershkowitz, Daniel
AU - Schneider, Hans
TI - Theorems of the alternative for cones and Lyapunov regularity of matrices
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 3
SP - 487
EP - 499
AB - Standard facts about separating linear functionals will be used to determine how two cones $C$ and $D$ and their duals $C^*$ and $D^*$ may overlap. When $T\:V\rightarrow W$ is linear and $K \subset V$ and $D\subset W$ are cones, these results will be applied to $C=T(K)$ and $D$, giving a unified treatment of several theorems of the alternate which explain when $C$ contains an interior point of $D$. The case when $V=W$ is the space $H$ of $n\times n$ Hermitian matrices, $D$ is the $n\times n$ positive semidefinite matrices, and $T(X) = AX + X^*A$ yields new and known results about the existence of block diagonal $X$’s satisfying the Lyapunov condition: $T(X)$ is an interior point of $D$. For the same $V$, $W$ and $D$, $ T(X)=X-B^*XB$ will be studied for certain cones $K$ of entry-wise nonnegative $X$’s.
LA - eng
KW - cones; theorems of the alternative; positive semidefinite matrices; Lyapunov regularity; Lyapunov stability
UR - http://eudml.org/doc/30378
ER -
References
top- 10.1080/03081087808817203, Lin. Multilin. Alg. 5 (1978), 249–256. (1978) MR0469939DOI10.1080/03081087808817203
- 10.1016/0024-3795(84)90023-5, Lin. Alg. Appl. 61 (1984), 83–89. (1984) MR0755250DOI10.1016/0024-3795(84)90023-5
- 10.1016/0022-247X(69)90054-7, Math. Anal. Appl. 27 (1969), 367–389. (1969) Zbl0174.31502MR0242865DOI10.1016/0022-247X(69)90054-7
- Cones, Matrices and Mathematical Programming, Lecture Notes in Economics and Mathematical Systems, Vol. 79, Springer-Verlag, 1973. (1973) Zbl0256.90002MR0363463
- 10.1016/0022-247X(71)90072-2, J. Math. Anal. Appl. 33 (1971), 482–496. (1971) MR0279117DOI10.1016/0022-247X(71)90072-2
- 10.1016/0024-3795(78)90040-X, Lin. Alg. Appl. 21 (1978), 163–174. (1978) MR0480585DOI10.1016/0024-3795(78)90040-X
- 10.1016/0024-3795(92)90015-3, Lin. Alg. Appl. 172 (1992), 1–25. (1992) MR1168493DOI10.1016/0024-3795(92)90015-3
- 10.1016/0022-247X(63)90023-4, J. Math. Anal. Appl. 6 (1963), 430–436. (1963) MR0148678DOI10.1016/0022-247X(63)90023-4
- Extremum problems with certain constraints, Soviet Math. 4 (1963), 759–762. (1963) MR0162162
- The theory of linear economic models, McGraw-Hill, 1960. (1960) MR0115801
- Lectures on Mathematical Theory of Extremum Problems [sic], Lecture Notes in Economics and Mathematical Systems, Vol. 67, Springer-Verlag, 1972. MR0464021
- 10.1090/conm/047/828302, Contemp. Math. 47 (1985), 203–216. (1985) MR0828302DOI10.1090/conm/047/828302
- Linear Topological Spaces, van Nostrand, 1963. (1963) MR0166578
- Le problème général de la stabilité du mouvement, Ann. Math. Studies 17 (1949), Princeton University Press. (1949)
- Convex Structures and Economic Theory, Mathematics in Science and Engineering, Vol. 51, Academic, 1968. (1968) Zbl0172.44502MR0277233
- 10.1016/0022-247X(62)90030-6, J. Math. Analysis and Appl. 4 (1962), 72–84. (1962) MR0142555DOI10.1016/0022-247X(62)90030-6
- Convex Analysis, Princeton University Press, 1970. (1970) Zbl0193.18401MR0274683
- 10.1137/1021094, SIAM Rev. 21 (1979), 528–541. (1979) MR0545883DOI10.1137/1021094
- Matrices with , J. Alg. 1 (1964), 1–10. (1964) Zbl0126.02802MR0161865
- Nonlinear functional analysis and its applications III: Variational methods and optimation, Springer-Verlag, 1985. (1985) MR0768749
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.