Superconvergence analysis of spectral volume methods for one-dimensional diffusion and third-order wave equations
Xu Yin; Waixiang Cao; Zhimin Zhang
Applications of Mathematics (2024)
- Volume: 69, Issue: 5, page 545-570
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYin, Xu, Cao, Waixiang, and Zhang, Zhimin. "Superconvergence analysis of spectral volume methods for one-dimensional diffusion and third-order wave equations." Applications of Mathematics 69.5 (2024): 545-570. <http://eudml.org/doc/299316>.
@article{Yin2024,
abstract = {We present a unified approach to studying the superconvergence property of the spectral volume (SV) method for high-order time-dependent partial differential equations using the local discontinuous Galerkin formulation. We choose the diffusion and third-order wave equations as our models to illustrate approach and the main idea. The SV scheme is designed with control volumes constructed using the Gauss points or Radau points in subintervals of the underlying meshes, which leads to two SV schemes referred to as GSV and RSV schemes, respectively. With a careful choice of numerical fluxes, we demonstrate that the schemes are stable and exhibit optimal error estimates. Furthermore, we establish superconvergence of the GSV and RSV for the solution itself and the auxiliary variables. To be more precise, we prove that the errors of numerical fluxes at nodes and for the cell averages are superconvergent with orders of $\{\mathcal \{O\}\}(h^\{2k+1\})$ and $\{\mathcal \{O\}\}(h^\{2k\} )$ for RSV and GSV, respectively. Superconvergence for the function value and derivative value approximations is also studied and the superconvergence points are identified at Gauss points and Radau points. Numerical experiments are presented to illustrate theoretical findings.},
author = {Yin, Xu, Cao, Waixiang, Zhang, Zhimin},
journal = {Applications of Mathematics},
keywords = {spectral volume method; error estimate; superconvergence; high order equation},
language = {eng},
number = {5},
pages = {545-570},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Superconvergence analysis of spectral volume methods for one-dimensional diffusion and third-order wave equations},
url = {http://eudml.org/doc/299316},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Yin, Xu
AU - Cao, Waixiang
AU - Zhang, Zhimin
TI - Superconvergence analysis of spectral volume methods for one-dimensional diffusion and third-order wave equations
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 5
SP - 545
EP - 570
AB - We present a unified approach to studying the superconvergence property of the spectral volume (SV) method for high-order time-dependent partial differential equations using the local discontinuous Galerkin formulation. We choose the diffusion and third-order wave equations as our models to illustrate approach and the main idea. The SV scheme is designed with control volumes constructed using the Gauss points or Radau points in subintervals of the underlying meshes, which leads to two SV schemes referred to as GSV and RSV schemes, respectively. With a careful choice of numerical fluxes, we demonstrate that the schemes are stable and exhibit optimal error estimates. Furthermore, we establish superconvergence of the GSV and RSV for the solution itself and the auxiliary variables. To be more precise, we prove that the errors of numerical fluxes at nodes and for the cell averages are superconvergent with orders of ${\mathcal {O}}(h^{2k+1})$ and ${\mathcal {O}}(h^{2k} )$ for RSV and GSV, respectively. Superconvergence for the function value and derivative value approximations is also studied and the superconvergence points are identified at Gauss points and Radau points. Numerical experiments are presented to illustrate theoretical findings.
LA - eng
KW - spectral volume method; error estimate; superconvergence; high order equation
UR - http://eudml.org/doc/299316
ER -
References
top- An, J., Cao, W., 10.1051/m2an/2023003, ESAIM, Math. Model. Numer. Anal. 57 (2023), 367-394. (2023) Zbl1529.65096MR4555128DOI10.1051/m2an/2023003
- Arnold, D. N., 10.1137/0719052, SIAM J. Numer. Anal. 19 (1982), 742-760. (1982) Zbl0482.65060MR0664882DOI10.1137/0719052
- Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., 10.1002/num.1690120303, Numer. Methods Partial Differ. Equations 12 (1996), 347-392. (1996) Zbl0854.65089MR1388445DOI10.1002/num.1690120303
- Cao, W., 10.1007/s10915-023-02309-z, J. Sci. Comput. 96 (2023), Article ID 90, 31 pages. (2023) Zbl1529.65031MR4629479DOI10.1007/s10915-023-02309-z
- Cao, W., Huang, Q., 10.1007/s10915-017-0377-z, J. Sci. Comput. 72 (2017), 761-791. (2017) Zbl1429.65226MR3673694DOI10.1007/s10915-017-0377-z
- Cao, W., Shu, C.-W., Yang, Y., Zhang, Z., 10.1137/140996203, SIAM J. Numer. Anal. 53 (2015), 1651-1671. (2015) Zbl1328.65195MR3365565DOI10.1137/140996203
- Cao, W., Zhang, Z., Zou, Q., 10.1137/130946873, SIAM J. Numer. Anal. 52 (2014), 2555-2573. (2014) Zbl1331.65128MR3270187DOI10.1137/130946873
- Cao, W., Zou, Q., 10.1007/s10915-021-01715-5, J. Sci. Comput. 90 (2022), Article ID 61, 29 pages. (2022) Zbl1481.65206MR4357099DOI10.1007/s10915-021-01715-5
- Cheng, Y., Shu, C.-W., 10.1137/090747701, SIAM J. Numer. Anal. 47 (2010), 4044-4072. (2010) Zbl1208.65137MR2585178DOI10.1137/090747701
- Cockburn, B., Kanschat, G., Schötzau, D., 10.1090/s0025-5718-04-01718-1, Math. Comput. 74 (2005), 1067-1095. (2005) Zbl1069.76029MR2136994DOI10.1090/s0025-5718-04-01718-1
- Cockburn, B., Shu, C.-W., 10.2307/2008474, Math. Comput. 52 (1989), 411-435. (1989) Zbl0662.65083MR0983311DOI10.2307/2008474
- Cockburn, B., Shu, C.-W., 10.1137/S0036142997316712, SIAM J. Numer. Anal. 35 (1998), 2440-2463. (1998) Zbl0927.65118MR1655854DOI10.1137/S0036142997316712
- Godunov, S. K., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., N. Ser. 47 (1959), 271-306. (1959) Zbl0171.46204MR0119433
- Kannan, R., 10.4208/cicp.070710.100111a, Commun. Comput. Phys. 10 (2011), 1257-1279. (2011) Zbl1388.65079MR2830847DOI10.4208/cicp.070710.100111a
- Kannan, R., Wang, Z. J., 10.1007/s10915-009-9269-1, J. Sci. Comput. 41 (2009), 165-199. (2009) Zbl1203.65160MR2550366DOI10.1007/s10915-009-9269-1
- Liu, H., Yan, J., 10.1137/080720255, SIAM J. Numer. Anal. 47 (2009), 675-698. (2009) Zbl1189.65227MR2475957DOI10.1137/080720255
- Sun, Y., Wang, Z. J., Liu, Y., 10.1016/j.jcp.2005.10.019, J. Comput. Phys. 215 (2006), 41-58. (2006) Zbl1140.76381MR2215651DOI10.1016/j.jcp.2005.10.019
- Wang, Z. J., 10.1006/jcph.2002.7041, J. Comput. Phys. 178 (2002), 210-251. (2002) Zbl0997.65115MR1899140DOI10.1006/jcph.2002.7041
- Wang, Z. J., Zhang, L., Liu, Y., 10.1016/j.jcp.2003.09.012, J. Comput. Phys. 194 (2004), 716-741. (2004) Zbl1039.65072MR2034862DOI10.1016/j.jcp.2003.09.012
- Zhang, M., Shu, C.-W., 10.1016/j.compfluid.2003.05.006, Comput. Fluids 34 (2005), 581-592. (2005) Zbl1138.76391DOI10.1016/j.compfluid.2003.05.006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.