A note on the shift theorem for the Laplacian in polygonal domains

Jens Markus Melenk; Claudio Rojik

Applications of Mathematics (2024)

  • Volume: 69, Issue: 5, page 653-693
  • ISSN: 0862-7940

Abstract

top
We present a shift theorem for solutions of the Poisson equation in a finite planar cone (and hence also on plane polygons) for Dirichlet, Neumann, and mixed boundary conditions. The range in which the shift theorem holds depends on the angle of the cone. For the right endpoint of the range, the shift theorem is described in terms of Besov spaces rather than Sobolev spaces.

How to cite

top

Melenk, Jens Markus, and Rojik, Claudio. "A note on the shift theorem for the Laplacian in polygonal domains." Applications of Mathematics 69.5 (2024): 653-693. <http://eudml.org/doc/299322>.

@article{Melenk2024,
abstract = {We present a shift theorem for solutions of the Poisson equation in a finite planar cone (and hence also on plane polygons) for Dirichlet, Neumann, and mixed boundary conditions. The range in which the shift theorem holds depends on the angle of the cone. For the right endpoint of the range, the shift theorem is described in terms of Besov spaces rather than Sobolev spaces.},
author = {Melenk, Jens Markus, Rojik, Claudio},
journal = {Applications of Mathematics},
keywords = {Besov space; corner domain; corner singularity; Mellin calculus},
language = {eng},
number = {5},
pages = {653-693},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the shift theorem for the Laplacian in polygonal domains},
url = {http://eudml.org/doc/299322},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Melenk, Jens Markus
AU - Rojik, Claudio
TI - A note on the shift theorem for the Laplacian in polygonal domains
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 5
SP - 653
EP - 693
AB - We present a shift theorem for solutions of the Poisson equation in a finite planar cone (and hence also on plane polygons) for Dirichlet, Neumann, and mixed boundary conditions. The range in which the shift theorem holds depends on the angle of the cone. For the right endpoint of the range, the shift theorem is described in terms of Besov spaces rather than Sobolev spaces.
LA - eng
KW - Besov space; corner domain; corner singularity; Mellin calculus
UR - http://eudml.org/doc/299322
ER -

References

top
  1. Babuška, I., Guo, B. Q., 10.1137/0519014, SIAM J. Math. Anal. 19 (1988), 172-203. (1988) Zbl0647.35021MR0924554DOI10.1137/0519014
  2. Babuška, I., Guo, B. Q., 10.1137/0520054, SIAM J. Math. Anal. 20 (1989), 763-781. (1989) Zbl0706.35028MR1000721DOI10.1137/0520054
  3. Babuška, I., Kellogg, R. B., Pitkäranta, J., 10.1007/BF01399326, Numer. Math. 33 (1979), 447-471. (1979) Zbl0423.65057MR0553353DOI10.1007/BF01399326
  4. Babuška, I., Osborn, J., Eigenvalue problems, Finite Element Methods 1 Handbook of Numerical Analysis II. North Holland, Amsterdam (1991), 641-789. (1991) Zbl0875.65087MR1115240
  5. Bacuta, C., Interpolation Between Subspaces of Hilbert Spaces and Applications to Shift Theorems for Elliptic Boundary Value Problems and Finite Element Methods: Ph. D. Thesis, Texas A&M University, College Station (2000). (2000) MR2701566
  6. Bacuta, C., Bramble, J. H., Xu, J., 10.1090/S0025-5718-02-01502-8, Math. Comput. 72 (2003), 1577-1595. (2003) Zbl1031.65133MR1986794DOI10.1090/S0025-5718-02-01502-8
  7. Bacuta, C., Bramble, J. H., Xu, J., 10.1515/156939503766614117, J. Numer. Math. 11 (2003), 75-94. (2003) Zbl1050.65108MR1987589DOI10.1515/156939503766614117
  8. Bramble, J. H., Scott, R., 10.1090/S0025-5718-1978-0501990-5, Math. Comput. 32 (1978), 947-954. (1978) Zbl0404.41005MR0501990DOI10.1090/S0025-5718-1978-0501990-5
  9. Costabel, M., Dauge, M., Nicaise, S., 10.1007/978-1-4419-1341-8_4, Around the Research of Vladimir Maz'ya. I. Function Spaces International Mathematical Series (New York) 11. Springer, New York (2010), 105-136. (2010) Zbl1196.46024MR2723815DOI10.1007/978-1-4419-1341-8_4
  10. Costabel, M., Dauge, M., Nicaise, S., 10.1142/S0218202512500157, Math. Models Methods Appl. Sci. 22 (2012), Article ID 1250015, 63 pages. (2012) Zbl1257.35056MR2928103DOI10.1142/S0218202512500157
  11. Costabel, M., Stephan, E., 10.4064/-15-1-175-251, Mathematical Models and Methods in Mechanics Banach Center Publications 15. PWN, Warsaw (1985), 175-251. (1985) Zbl0655.65129MR0874845DOI10.4064/-15-1-175-251
  12. Costabel, M., Stephan, E., Wendland, W. L., On boundary integral equations of the first kind for the bi-Laplacian in a polygonal domain, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 10 (1983), 197-241. (1983) Zbl0563.45007MR0728434
  13. Dahlke, S., 10.1016/S0893-9659(99)00075-0, Appl. Math. Lett. 12 (1999), 31-36. (1999) Zbl0940.35064MR1751404DOI10.1016/S0893-9659(99)00075-0
  14. Dahlke, S., DeVore, R. A., 10.1080/03605309708821252, Commun. Partial Differ. Equations 22 (1997), 1-16. (1997) Zbl0883.35018MR1434135DOI10.1080/03605309708821252
  15. Dauge, M., 10.1007/BFb0086682, Lecture Notes in Mathematics 1341. Springer, Berlin (1988). (1988) Zbl0668.35001MR0961439DOI10.1007/BFb0086682
  16. DeVore, R. A., Lorentz, G. G., 10.1007/978-3-662-02888-9, Grundlehren der Mathematischen Wissenschaften 303. Springer, New York (1993). (1993) Zbl0797.41016MR1261635DOI10.1007/978-3-662-02888-9
  17. Ebmeyer, C., 10.1002/1522-2616(200203)236:1<91::AID-MANA91>3.0.CO;2-1, Math. Nachr. 236 (2002), 91-108. (2002) Zbl1147.35309MR1888558DOI10.1002/1522-2616(200203)236:1<91::AID-MANA91>3.0.CO;2-1
  18. Ebmeyer, C., Frehse, J., 10.1002/mana.1999.3212030104, Math. Nachr. 203 (1999), 47-74. (1999) Zbl0934.35048MR1698636DOI10.1002/mana.1999.3212030104
  19. Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19. AMS, Providence (2010). (2010) Zbl1194.35001MR1625845DOI10.1090/gsm/019
  20. Gilbarg, D., Trudinger, N. S., 10.1007/978-3-642-61798-0, Grundlehren der Mathematischen Wissenschaften 224. Springer, Berlin (1983). (1983) Zbl0562.35001MR0737190DOI10.1007/978-3-642-61798-0
  21. Grisvard, P., Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées 22. Springer, Berlin (1992). (1992) Zbl0766.35001MR1173209
  22. Grisvard, P., 10.1137/1.9781611972030, Classics in Applied Mathematics 69. SIAM, Philadelphia (2011). (2011) Zbl1231.35002MR3396210DOI10.1137/1.9781611972030
  23. Jerison, D. S., Kenig, C. E., 10.1090/S0273-0979-1981-14884-9, Bull. Am. Math. Soc., New Ser. 4 (1981), 203-207. (1981) Zbl0471.35026MR0598688DOI10.1090/S0273-0979-1981-14884-9
  24. Jerison, D. S., Kenig, C. E., Boundary value problems on Lipschitz domains, Studies in Partial Differential Equations MAA Studies in Mathematics 23. Mathematical Association of America, Washington (1982), 1-68. (1982) Zbl0529.31007MR0716504
  25. Jerison, D., Kenig, C. E., 10.1006/jfan.1995.1067, J. Funct. Anal. 130 (1995), 161-219. (1995) Zbl0832.35034MR1331981DOI10.1006/jfan.1995.1067
  26. Kondrat'ev, V. A., Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209-292 Russian. (1967) Zbl0162.16301MR0226187
  27. Kozlov, V. A., Maz'ya, V. G., Rossmann, J., 10.1090/surv/052, Mathematical Surveys and Monographs 52. AMS, Providence (1997). (1997) Zbl0947.35004MR1469972DOI10.1090/surv/052
  28. Maz'ya, V. G., Plamenevskij, B. A., 10.1002/mana.19770760103, Math. Nachr. 76 (1977), 29-60 Russian. (1977) Zbl0359.35024MR601608DOI10.1002/mana.19770760103
  29. Maz'ya, V. G., Plamenevskij, B. A., 10.1090/trans2/123, Transl., Ser. 2, Am. Math. Soc. 123 (1984), 1-56 translation from Math. Nachr. 81 1978 25-82. (1984) Zbl0554.35035MR492821DOI10.1090/trans2/123
  30. Maz'ya, V. G., Rossmann, J., 10.1090/surv/162, Mathematical Surveys and Monographs 162. AMS, Providence (2010). (2010) Zbl1196.35005MR2641539DOI10.1090/surv/162
  31. McLean, W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge (2000). (2000) Zbl0948.35001MR1742312
  32. Melenk, J. M., On Generalized Finite-Element Methods: Ph. D. Thesis, University of Maryland, College Park (1995). (1995) MR2692949
  33. Nazarov, S. A., Plamenevsky, B. A., 10.1515/9783110848915, De Gruyter Expositions in Mathematics 13. Walter de Gruyter, Berlin (1994). (1994) Zbl0806.35001MR1283387DOI10.1515/9783110848915
  34. Nicaise, S., Polygonal Interface Problems, Methoden und Verfahren der Mathematischen Physik 39. Peter Lang, Frankfurt am Main (1993). (1993) Zbl0794.35040MR1236228
  35. Rojik, C., 10.34726/hss.2019.65840, Technische Universität Wien, Wien (2019). (2019) DOI10.34726/hss.2019.65840
  36. Savaré, G., 10.1006/jfan.1997.3158, J. Funct. Anal. 152 (1998), 176-201. (1998) Zbl0889.35018MR1600081DOI10.1006/jfan.1997.3158
  37. Tartar, L., 10.1007/978-3-540-71483-5, Lecture Notes of the Unione Matematica Italiana 3. Springer, Berlin (2007). (2007) Zbl1126.46001MR2328004DOI10.1007/978-3-540-71483-5
  38. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg (1995). (1995) Zbl0830.46028MR1328645
  39. Triebel, H., 10.5209/rev_REMA.2002.v15.n2.16910, Rev. Mat. Complut. 15 (2002), 475-524. (2002) Zbl1034.46033MR1951822DOI10.5209/rev_REMA.2002.v15.n2.16910

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.