Displaying similar documents to “A note on the shift theorem for the Laplacian in polygonal domains”

Existence of solutions to the Poisson equation in L₂-weighted spaces

Joanna Rencławowicz, Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

Similarity:

We consider the Poisson equation with the Dirichlet and the Neumann boundary conditions in weighted Sobolev spaces. The weight is a positive power of the distance to a distinguished plane. We prove the existence of solutions in a suitably defined weighted space.

Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains.

Martin Dindos, Marius Mitrea (2002)

Publicacions Matemàtiques

Similarity:

Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type Δu - N(x,u) = F(x), equipped with Dirichlet and Neumann boundary conditions.

Diffusion and propagation problems in some ramified domains with a fractal boundary

Yves Achdou, Christophe Sabot, Nicoletta Tchou (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper is devoted to some elliptic boundary value problems in a self-similar ramified domain of 2 with a fractal boundary. Both the Laplace and Helmholtz equations are studied. A generalized Neumann boundary condition is imposed on the fractal boundary. Sobolev spaces on this domain are studied. In particular, extension and trace results are obtained. These results enable the investigation of the variational formulation of the above mentioned boundary value problems. Next, for...