The positive cone of a Banach lattice. Coincidence of topologies and metrizability
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 4, page 475-483
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLipecki, Zbigniew. "The positive cone of a Banach lattice. Coincidence of topologies and metrizability." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 475-483. <http://eudml.org/doc/299323>.
@article{Lipecki2023,
abstract = {Let $X$ be a Banach lattice, and denote by $X_+$ its positive cone. The weak topology on $X_+$ is metrizable if and only if it coincides with the strong topology if and only if $X$ is Banach-lattice isomorphic to $l^1(\Gamma )$ for a set $\Gamma $. The weak$^*$ topology on $X_+^*$ is metrizable if and only if $X$ is Banach-lattice isomorphic to a $C(K)$-space, where $K$ is a metrizable compact space.},
author = {Lipecki, Zbigniew},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {normed lattice; Banach lattice; positive cone; AM-space; AL-space; Banach lattice $C(K)$; Banach lattice $l^1(\Gamma )$; strong topology; weak topology; weak$^*$ topology; coincidence of topologies; metrizability; nonatomic measure},
language = {eng},
number = {4},
pages = {475-483},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The positive cone of a Banach lattice. Coincidence of topologies and metrizability},
url = {http://eudml.org/doc/299323},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Lipecki, Zbigniew
TI - The positive cone of a Banach lattice. Coincidence of topologies and metrizability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 475
EP - 483
AB - Let $X$ be a Banach lattice, and denote by $X_+$ its positive cone. The weak topology on $X_+$ is metrizable if and only if it coincides with the strong topology if and only if $X$ is Banach-lattice isomorphic to $l^1(\Gamma )$ for a set $\Gamma $. The weak$^*$ topology on $X_+^*$ is metrizable if and only if $X$ is Banach-lattice isomorphic to a $C(K)$-space, where $K$ is a metrizable compact space.
LA - eng
KW - normed lattice; Banach lattice; positive cone; AM-space; AL-space; Banach lattice $C(K)$; Banach lattice $l^1(\Gamma )$; strong topology; weak topology; weak$^*$ topology; coincidence of topologies; metrizability; nonatomic measure
UR - http://eudml.org/doc/299323
ER -
References
top- Aliprantis C. D., Burkinshaw O., Positive Operators, Pure and Applied Mathematics, 119, Academic Press, Orlando, 1985. Zbl1098.47001MR0809372
- Barroso C. S., Kalenda O. F. K., Lin P.-K., 10.1007/s00209-011-0915-6, Math. Z. 271 (2012), no. 3–4, 1271–1285. MR2945607DOI10.1007/s00209-011-0915-6
- Bauer H., Measure and Integration Theory, De Gruyter Studies in Mathematics, 26, Walter de Gruyter, Berlin, 2001. MR1897176
- Dilworth S. J., A weak topology characterization of , Geometry of Banach Spaces, Strobl 1989, London Math. Soc. Lecture Note Ser., 158, Cambridge University Press, Cambridge, 1990, pages 89–94. MR1110188
- Dunford N., Schwartz J. T., Linear Operators. I. General Theory, Pure and Applied Mathematics, 7, Interscience Publishers, New York, 1958. MR0117523
- Edgar G. A., Wheeler R. F., 10.2140/pjm.1984.115.317, Pacific J. Math. 115 (1984), no. 2, 317–350. MR0765190DOI10.2140/pjm.1984.115.317
- Engelking R., General Topology, Monografie Matematyczne, 60, PWN---Polish Scientific Publishers, Warszawa, 1977. Zbl0684.54001MR0500780
- Halmos P. R., A Hilbert Space Problem Book, D. van Nostrand Co., Princeton, 1967. MR0208368
- Lipecki Z., 10.1007/s00229-007-0085-3, Manuscripta Math. 123 (2007), no. 2, 133–146. Zbl1118.28003MR2306629DOI10.1007/s00229-007-0085-3
- Lipecki Z., Order intervals in . Compactness, coincidence of topologies, metrizability, Comment. Math. Univ. Carolin. 63 (2022), no. 3, 295–306. MR4542790
- Rudin W., Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. Zbl0867.46001MR0365062
- Semadeni Z., Banach Spaces of Continuous Functions. Vol. I, Monografie Matematyczne, 55, PWN---Polish Scientific Publishers, Warszawa, 1971. MR0296671
- Varadarajan V. S., Weak convergence of measures on separable metric spaces, Sankhyā 19 (1958), 15–22. MR0094838
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.