The positive cone of a Banach lattice. Coincidence of topologies and metrizability

Zbigniew Lipecki

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 4, page 475-483
  • ISSN: 0010-2628

Abstract

top
Let X be a Banach lattice, and denote by X + its positive cone. The weak topology on X + is metrizable if and only if it coincides with the strong topology if and only if X is Banach-lattice isomorphic to l 1 ( Γ ) for a set Γ . The weak * topology on X + * is metrizable if and only if X is Banach-lattice isomorphic to a C ( K ) -space, where K is a metrizable compact space.

How to cite

top

Lipecki, Zbigniew. "The positive cone of a Banach lattice. Coincidence of topologies and metrizability." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 475-483. <http://eudml.org/doc/299323>.

@article{Lipecki2023,
abstract = {Let $X$ be a Banach lattice, and denote by $X_+$ its positive cone. The weak topology on $X_+$ is metrizable if and only if it coincides with the strong topology if and only if $X$ is Banach-lattice isomorphic to $l^1(\Gamma )$ for a set $\Gamma $. The weak$^*$ topology on $X_+^*$ is metrizable if and only if $X$ is Banach-lattice isomorphic to a $C(K)$-space, where $K$ is a metrizable compact space.},
author = {Lipecki, Zbigniew},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {normed lattice; Banach lattice; positive cone; AM-space; AL-space; Banach lattice $C(K)$; Banach lattice $l^1(\Gamma )$; strong topology; weak topology; weak$^*$ topology; coincidence of topologies; metrizability; nonatomic measure},
language = {eng},
number = {4},
pages = {475-483},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The positive cone of a Banach lattice. Coincidence of topologies and metrizability},
url = {http://eudml.org/doc/299323},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Lipecki, Zbigniew
TI - The positive cone of a Banach lattice. Coincidence of topologies and metrizability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 475
EP - 483
AB - Let $X$ be a Banach lattice, and denote by $X_+$ its positive cone. The weak topology on $X_+$ is metrizable if and only if it coincides with the strong topology if and only if $X$ is Banach-lattice isomorphic to $l^1(\Gamma )$ for a set $\Gamma $. The weak$^*$ topology on $X_+^*$ is metrizable if and only if $X$ is Banach-lattice isomorphic to a $C(K)$-space, where $K$ is a metrizable compact space.
LA - eng
KW - normed lattice; Banach lattice; positive cone; AM-space; AL-space; Banach lattice $C(K)$; Banach lattice $l^1(\Gamma )$; strong topology; weak topology; weak$^*$ topology; coincidence of topologies; metrizability; nonatomic measure
UR - http://eudml.org/doc/299323
ER -

References

top
  1. Aliprantis C. D., Burkinshaw O., Positive Operators, Pure and Applied Mathematics, 119, Academic Press, Orlando, 1985. Zbl1098.47001MR0809372
  2. Barroso C. S., Kalenda O. F. K., Lin P.-K., 10.1007/s00209-011-0915-6, Math. Z. 271 (2012), no. 3–4, 1271–1285. MR2945607DOI10.1007/s00209-011-0915-6
  3. Bauer H., Measure and Integration Theory, De Gruyter Studies in Mathematics, 26, Walter de Gruyter, Berlin, 2001. MR1897176
  4. Dilworth S. J., A weak topology characterization of l 1 ( m ) , Geometry of Banach Spaces, Strobl 1989, London Math. Soc. Lecture Note Ser., 158, Cambridge University Press, Cambridge, 1990, pages 89–94. MR1110188
  5. Dunford N., Schwartz J. T., Linear Operators. I. General Theory, Pure and Applied Mathematics, 7, Interscience Publishers, New York, 1958. MR0117523
  6. Edgar G. A., Wheeler R. F., 10.2140/pjm.1984.115.317, Pacific J. Math. 115 (1984), no. 2, 317–350. MR0765190DOI10.2140/pjm.1984.115.317
  7. Engelking R., General Topology, Monografie Matematyczne, 60, PWN---Polish Scientific Publishers, Warszawa, 1977. Zbl0684.54001MR0500780
  8. Halmos P. R., A Hilbert Space Problem Book, D. van Nostrand Co., Princeton, 1967. MR0208368
  9. Lipecki Z., 10.1007/s00229-007-0085-3, Manuscripta Math. 123 (2007), no. 2, 133–146. Zbl1118.28003MR2306629DOI10.1007/s00229-007-0085-3
  10. Lipecki Z., Order intervals in C ( K ) . Compactness, coincidence of topologies, metrizability, Comment. Math. Univ. Carolin. 63 (2022), no. 3, 295–306. MR4542790
  11. Rudin W., Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. Zbl0867.46001MR0365062
  12. Semadeni Z., Banach Spaces of Continuous Functions. Vol. I, Monografie Matematyczne, 55, PWN---Polish Scientific Publishers, Warszawa, 1971. MR0296671
  13. Varadarajan V. S., Weak convergence of measures on separable metric spaces, Sankhyā 19 (1958), 15–22. MR0094838

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.