Displaying similar documents to “The positive cone of a Banach lattice. Coincidence of topologies and metrizability”

Sufficient conditions for a T-partial order obtained from triangular norms to be a lattice

Lifeng Li, Jianke Zhang, Chang Zhou (2019)

Kybernetika

Similarity:

For a t-norm T on a bounded lattice ( L , ) , a partial order T was recently defined and studied. In [11], it was pointed out that the binary relation T is a partial order on L , but ( L , T ) may not be a lattice in general. In this paper, several sufficient conditions under which ( L , T ) is a lattice are given, as an answer to an open problem posed by the authors of [11]. Furthermore, some examples of t-norms on L such that ( L , T ) is a lattice are presented.

Order intervals in C ( K ) . Compactness, coincidence of topologies, metrizability

Zbigniew Lipecki (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let K be a compact space and let C ( K ) be the Banach lattice of real-valued continuous functions on K . We establish eleven conditions equivalent to the strong compactness of the order interval [ 0 , x ] in C ( K ) , including the following ones: (i) { x > 0 } consists of isolated points of K ; (ii) [ 0 , x ] is pointwise compact; (iii) [ 0 , x ] is weakly compact; (iv) the strong topology and that of pointwise convergence coincide on [ 0 , x ] ; (v) the strong and weak topologies coincide on [ 0 , x ] . Moreover, the weak topology and that of pointwise...

Orthogonality and complementation in the lattice of subspaces of a finite vector space

Ivan Chajda, Helmut Länger (2022)

Mathematica Bohemica

Similarity:

We investigate the lattice 𝐋 ( 𝐕 ) of subspaces of an m -dimensional vector space 𝐕 over a finite field GF ( q ) with a prime power q = p n together with the unary operation of orthogonality. It is well-known that this lattice is modular and that the orthogonality is an antitone involution. The lattice 𝐋 ( 𝐕 ) satisfies the chain condition and we determine the number of covers of its elements, especially the number of its atoms. We characterize when orthogonality is a complementation and hence when 𝐋 ( 𝐕 ) is orthomodular....

Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices

Gábor Czédli (2024)

Mathematica Bohemica

Similarity:

Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no M 3 as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset P is said to be JConSPS-representable if there is an SPS lattice L such that P is isomorphic to the poset J ( Con L ) of join-irreducible congruences of L . We prove that...

Hyperreflexivity of bilattices

Kamila Kliś-Garlicka (2016)

Czechoslovak Mathematical Journal

Similarity:

The notion of a bilattice was introduced by Shulman. A bilattice is a subspace analogue for a lattice. In this work the definition of hyperreflexivity for bilattices is given and studied. We give some general results concerning this notion. To a given lattice we can construct the bilattice Σ . Similarly, having a bilattice Σ we may consider the lattice Σ . In this paper we study the relationship between hyperreflexivity of subspace lattices and of their associated bilattices. Some examples...

The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces

S. Gabriyelyan, J. Kąkol, G. Plebanek (2016)

Studia Mathematica

Similarity:

Following Banakh and Gabriyelyan (2016) we say that a Tychonoff space X is an Ascoli space if every compact subset of C k ( X ) is evenly continuous; this notion is closely related to the classical Ascoli theorem. Every k -space, hence any k-space, is Ascoli. Let X be a metrizable space. We prove that the space C k ( X ) is Ascoli iff C k ( X ) is a k -space iff X is locally compact. Moreover, C k ( X ) endowed with the weak topology is Ascoli iff X is countable and discrete. Using some basic concepts from probability...

Lattice copies of c₀ and in spaces of integrable functions for a vector measure

S. Okada, W. J. Ricker, E. A. Sánchez Pérez

Similarity:

The spaces L¹(m) of all m-integrable (resp. L ¹ w ( m ) of all scalarly m-integrable) functions for a vector measure m, taking values in a complex locally convex Hausdorff space X (briefly, lcHs), are themselves lcHs for the mean convergence topology. Additionally, L ¹ w ( m ) is always a complex vector lattice; this is not necessarily so for L¹(m). To identify precisely when L¹(m) is also a complex vector lattice is one of our central aims. Whenever X is sequentially complete, then this is the case. If,...

Pisier's inequality revisited

Tuomas Hytönen, Assaf Naor (2013)

Studia Mathematica

Similarity:

Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies - 1 , 1 | | j = 1 n j f j ( ε ) | | p d μ ( ε ) p - 1 , 1 - 1 , 1 | | j = 1 n δ j Δ f j ( ε ) | | p d μ ( ε ) d μ ( δ ) , where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and j j = 1 n and Δ = j = 1 n j are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by p ( X ) , we show that p ( X ) k = 1 n 1 / k for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special...

Construction of uninorms on bounded lattices

Gül Deniz Çaylı, Funda Karaçal (2017)

Kybernetika

Similarity:

In this paper, we propose the general methods, yielding uninorms on the bounded lattice ( L , , 0 , 1 ) , with some additional constraints on e L { 0 , 1 } for a fixed neutral element e L { 0 , 1 } based on underlying an arbitrary triangular norm T e on [ 0 , e ] and an arbitrary triangular conorm S e on [ e , 1 ] . And, some illustrative examples are added for clarity.

Goldie extending elements in modular lattices

Shriram K. Nimbhorkar, Rupal C. Shroff (2017)

Mathematica Bohemica

Similarity:

The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations...

Unicellularity of the multiplication operator on Banach spaces of formal power series

B. Yousefi (2001)

Studia Mathematica

Similarity:

Let β ( n ) n = 0 be a sequence of positive numbers and 1 ≤ p < ∞. We consider the space p ( β ) of all power series f ( z ) = n = 0 f ̂ ( n ) z such that n = 0 | f ̂ ( n ) | p | β ( n ) | p < . We give some sufficient conditions for the multiplication operator, M z , to be unicellular on the Banach space p ( β ) . This generalizes the main results obtained by Lu Fang [1].

Some methods to obtain t-norms and t-conorms on bounded lattices

Gül Deniz Çaylı (2019)

Kybernetika

Similarity:

In this study, we introduce new methods for constructing t-norms and t-conorms on a bounded lattice L based on a priori given t-norm acting on [ a , 1 ] and t-conorm acting on [ 0 , a ] for an arbitrary element a L { 0 , 1 } . We provide an illustrative example to show that our construction methods differ from the known approaches and investigate the relationship between them. Furthermore, these methods are generalized by iteration to an ordinal sum construction for t-norms and t-conorms on a bounded lattice. ...

Explicit construction of normal lattice configurations

Mordechay B. Levin, Meir Smorodinsky (2005)

Colloquium Mathematicae

Similarity:

We extend Champernowne’s construction of normal numbers to base b to the d case and obtain an explicit construction of a generic point of the d shift transformation of the set 0 , 1 , . . . , b - 1 d .

Quasicontinuous spaces

Jing Lu, Bin Zhao, Kaiyun Wang, Dong Sheng Zhao (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We lift the notion of quasicontinuous posets to the topology context, called quasicontinuous spaces, and further study such spaces. The main results are: (1) A T 0 space ( X , τ ) is a quasicontinuous space if and only if S I ( X ) is locally hypercompact if and only if ( τ S I , ) is a hypercontinuous lattice; (2) a T 0 space X is an S I -continuous space if and only if X is a meet continuous and quasicontinuous space; (3) if a C -space X is a well-filtered poset under its specialization order, then X is a quasicontinuous...

L¹ representation of Riesz spaces

Bahri Turan (2006)

Studia Mathematica

Similarity:

Let E be a Riesz space. By defining the spaces L ¹ E and L E of E, we prove that the center Z ( L ¹ E ) of L ¹ E is L E and show that the injectivity of the Arens homomorphism m: Z(E)” → Z(E˜) is equivalent to the equality L ¹ E = Z ( E ) ' . Finally, we also give some representation of an order continuous Banach lattice E with a weak unit and of the order dual E˜ of E in L ¹ E which are different from the representations appearing in the literature.

Almost demi Dunford--Pettis operators on Banach lattices

Hedi Benkhaled (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce new concept of almost demi Dunford–Pettis operators. Let E be a Banach lattice. An operator T from E into E is said to be almost demi Dunford–Pettis if, for every sequence { x n } in E + such that x n 0 in σ ( E , E ' ) and x n - T x n 0 as n , we have x n 0 as n . In addition, we study some properties of this class of operators and its relationships with others known operators.