Some results on quasi-t-dual Baer modules

Rachid Tribak; Yahya Talebi; Mehrab Hosseinpour

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 4, page 411-427
  • ISSN: 0010-2628

Abstract

top
Let R be a ring and let M be an R -module with S = End R ( M ) . Consider the preradical Z ¯ for the category of right R -modules Mod- R introduced by Y. Talebi and N. Vanaja in 2002 and defined by Z ¯ ( M ) = { U M : M / U is small in its injective hull } . The module M is called quasi-t-dual Baer if ϕ ϕ ( Z ¯ 2 ( M ) ) is a direct summand of M for every two-sided ideal of S , where Z ¯ 2 ( M ) = Z ¯ ( Z ¯ ( M ) ) . In this paper, we show that M is quasi-t-dual Baer if and only if Z ¯ 2 ( M ) is a direct summand of M and Z ¯ 2 ( M ) is a quasi-dual Baer module. It is also shown that any direct summand of a quasi-t-dual Baer module inherits the property. The last part of the paper is devoted to the comparison of the notions of quasi-dual Baer modules and quasi-t-dual Baer modules. Also, right quasi-t-dual Baer rings are investigated.

How to cite

top

Tribak, Rachid, Talebi, Yahya, and Hosseinpour, Mehrab. "Some results on quasi-t-dual Baer modules." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 411-427. <http://eudml.org/doc/299325>.

@article{Tribak2023,
abstract = {Let $R$ be a ring and let $M$ be an $R$-module with $S=\rm \{End\}_R(M)$. Consider the preradical $\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}$ for the category of right $R$-modules Mod-$R$ introduced by Y. Talebi and N. Vanaja in 2002 and defined by $\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}(M) = \bigcap \lbrace U\le M\colon M/U$ is small in its injective hull$\rbrace $. The module $M$ is called quasi-t-dual Baer if $\sum _\{\varphi \in \mathfrak \{I\}\} \varphi (\{\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}\}^2(M))$ is a direct summand of $M$ for every two-sided ideal $\mathfrak \{I\}$ of $S$, where $\{\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}\}^2(M) = \{\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}\} (\{\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}\}(M))$. In this paper, we show that $M$ is quasi-t-dual Baer if and only if $\{\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}\}^2(M) $ is a direct summand of $M$ and $\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}^2(M)$ is a quasi-dual Baer module. It is also shown that any direct summand of a quasi-t-dual Baer module inherits the property. The last part of the paper is devoted to the comparison of the notions of quasi-dual Baer modules and quasi-t-dual Baer modules. Also, right quasi-t-dual Baer rings are investigated.},
author = {Tribak, Rachid, Talebi, Yahya, Hosseinpour, Mehrab},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fully invariant submodule; quasi-dual Baer module; quasi-dual Baer ring; quasi-t-dual Baer module; quasi-t-dual Baer ring},
language = {eng},
number = {4},
pages = {411-427},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some results on quasi-t-dual Baer modules},
url = {http://eudml.org/doc/299325},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Tribak, Rachid
AU - Talebi, Yahya
AU - Hosseinpour, Mehrab
TI - Some results on quasi-t-dual Baer modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 411
EP - 427
AB - Let $R$ be a ring and let $M$ be an $R$-module with $S=\rm {End}_R(M)$. Consider the preradical ${\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}$ for the category of right $R$-modules Mod-$R$ introduced by Y. Talebi and N. Vanaja in 2002 and defined by ${\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}(M) = \bigcap \lbrace U\le M\colon M/U$ is small in its injective hull$\rbrace $. The module $M$ is called quasi-t-dual Baer if $\sum _{\varphi \in \mathfrak {I}} \varphi ({{\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}}^2(M))$ is a direct summand of $M$ for every two-sided ideal $\mathfrak {I}$ of $S$, where ${{\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}}^2(M) = {{\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}} ({{\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}}(M))$. In this paper, we show that $M$ is quasi-t-dual Baer if and only if ${{\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}}^2(M) $ is a direct summand of $M$ and ${\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}^2(M)$ is a quasi-dual Baer module. It is also shown that any direct summand of a quasi-t-dual Baer module inherits the property. The last part of the paper is devoted to the comparison of the notions of quasi-dual Baer modules and quasi-t-dual Baer modules. Also, right quasi-t-dual Baer rings are investigated.
LA - eng
KW - fully invariant submodule; quasi-dual Baer module; quasi-dual Baer ring; quasi-t-dual Baer module; quasi-t-dual Baer ring
UR - http://eudml.org/doc/299325
ER -

References

top
  1. Amouzegar T., Talebi Y., On quasi-dual Baer modules, TWMS J. Pure Appl. Math. 4 (2013), no. 1, 78–86. MR3097682
  2. Amouzegar T., Tütüncü D. K., Talebi Y., 10.1007/s10013-013-0045-z, Vietnam J. Math. 42 (2014), no. 2, 159–169. MR3218852DOI10.1007/s10013-013-0045-z
  3. Atani S. E., Khoramdel M., Hesari S. D. P., T-dual Rickart modules, Bull. Iranian Math. Soc. 42 (2016), no. 3, 627–642. MR3518208
  4. Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting Modules, Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006. Zbl1102.16001MR2253001
  5. Clark W. E., 10.1215/S0012-7094-67-03446-1, Duke Math. J. 34 (1967), 417–424. Zbl0204.04502MR0214626DOI10.1215/S0012-7094-67-03446-1
  6. Cozzens J. H., 10.1090/S0002-9904-1970-12370-9, Bull. Amer. Math. Soc. 76 (1970), 75–79. MR0258886DOI10.1090/S0002-9904-1970-12370-9
  7. Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending Modules, Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, 1994. Zbl0841.16001MR1312366
  8. Haghany A., Karamzadeh O. A. S., Vedadi M. R., Rings with all finitely generated modules retractable, Bull. Iranian Math. Soc. 35 (2009), no. 2, 37–45, 270. MR2642924
  9. Harada M., On small submodules in the total quotient ring of a commutative ring, Rev. Un. Mat. Argentina 28 (1977), 99–102. MR0469899
  10. Kaplansky I., 10.1090/S0002-9947-1952-0046349-0, Trans. Amer. Math. Soc. 72 (1952), 327–340. MR0046349DOI10.1090/S0002-9947-1952-0046349-0
  11. Keskin Tütüncü D., Orhan Ertaş N., Smith P. F., Tribak R., 10.3906/mat-1210-15, Turkish J. Math. 38 (2014), no. 4, 649–657. MR3195734DOI10.3906/mat-1210-15
  12. Lee G., Rizvi S. T., Roman C. S., 10.1080/00927872.2010.515639, Comm. Algebra 39 (2011), no. 11, 4036–4058. MR2855110DOI10.1080/00927872.2010.515639
  13. Mohamed S. H., Müller B. J., Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990. Zbl0701.16001MR1084376
  14. Rizvi S. T., Roman C. S., 10.1081/AGB-120027854, Comm. Algebra 32 (2004), no. 1, 103–123. MR2036224DOI10.1081/AGB-120027854
  15. Smith P. F., 10.1016/j.jpaa.2004.09.001, J. Pure Appl. Algebra 197 (2005), no. 1–3, 305–321. MR2123991DOI10.1016/j.jpaa.2004.09.001
  16. Talebi Y., Vanaja N., 10.1080/00927870209342390, Comm. Algebra 30 (2002), no. 3, 1449–1460. MR1892609DOI10.1080/00927870209342390
  17. Tribak R., Talebi Y., Hosseinpour M., 10.1007/s40065-021-00316-2, Arab. J. Math. (Springer) 10 (2021), no. 2, 497–504. MR4283974DOI10.1007/s40065-021-00316-2
  18. Tribak R., Talebi Y., Hosseinpour M., Abdi M., 10.1007/s10013-018-0270-6, Vietnam J. Math. 46 (2018), no. 3, 653–664. MR3820454DOI10.1007/s10013-018-0270-6
  19. Tribak R., Talebi Y., Hosseinpour M., Abdi M., 10.1007/s40590-020-00301-3, Bol. Soc. Mat. Mex. 26 (2020), no. 3, 973–989. MR4155340DOI10.1007/s40590-020-00301-3
  20. Tribak R., Tütüncü K. D., On Z ¯ M -semiperfect modules, East-West J. Math. 8 (2006), no. 2, 195–205. MR2442425
  21. Zöschinger H., 10.1007/s10998-006-0007-2, Period. Math. Hungar. 52 (2006), no. 2, 105–128 (German, English summary). MR2265652DOI10.1007/s10998-006-0007-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.