Some results on quasi-t-dual Baer modules
Rachid Tribak; Yahya Talebi; Mehrab Hosseinpour
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 4, page 411-427
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTribak, Rachid, Talebi, Yahya, and Hosseinpour, Mehrab. "Some results on quasi-t-dual Baer modules." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 411-427. <http://eudml.org/doc/299325>.
@article{Tribak2023,
abstract = {Let $R$ be a ring and let $M$ be an $R$-module with $S=\rm \{End\}_R(M)$. Consider the preradical $\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}$ for the category of right $R$-modules Mod-$R$ introduced by Y. Talebi and N. Vanaja in 2002 and defined by $\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}(M) = \bigcap \lbrace U\le M\colon M/U$ is small in its injective hull$\rbrace $. The module $M$ is called quasi-t-dual Baer if $\sum _\{\varphi \in \mathfrak \{I\}\} \varphi (\{\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}\}^2(M))$ is a direct summand of $M$ for every two-sided ideal $\mathfrak \{I\}$ of $S$, where $\{\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}\}^2(M) = \{\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}\} (\{\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}\}(M))$. In this paper, we show that $M$ is quasi-t-dual Baer if and only if $\{\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}\}^2(M) $ is a direct summand of $M$ and $\{\hspace\{0.83328pt\}\overline\{\hspace\{-1.94443pt\}Z \hspace\{-0.27771pt\}\}\hspace\{0.83328pt\}\}^2(M)$ is a quasi-dual Baer module. It is also shown that any direct summand of a quasi-t-dual Baer module inherits the property. The last part of the paper is devoted to the comparison of the notions of quasi-dual Baer modules and quasi-t-dual Baer modules. Also, right quasi-t-dual Baer rings are investigated.},
author = {Tribak, Rachid, Talebi, Yahya, Hosseinpour, Mehrab},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fully invariant submodule; quasi-dual Baer module; quasi-dual Baer ring; quasi-t-dual Baer module; quasi-t-dual Baer ring},
language = {eng},
number = {4},
pages = {411-427},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some results on quasi-t-dual Baer modules},
url = {http://eudml.org/doc/299325},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Tribak, Rachid
AU - Talebi, Yahya
AU - Hosseinpour, Mehrab
TI - Some results on quasi-t-dual Baer modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 411
EP - 427
AB - Let $R$ be a ring and let $M$ be an $R$-module with $S=\rm {End}_R(M)$. Consider the preradical ${\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}$ for the category of right $R$-modules Mod-$R$ introduced by Y. Talebi and N. Vanaja in 2002 and defined by ${\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}(M) = \bigcap \lbrace U\le M\colon M/U$ is small in its injective hull$\rbrace $. The module $M$ is called quasi-t-dual Baer if $\sum _{\varphi \in \mathfrak {I}} \varphi ({{\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}}^2(M))$ is a direct summand of $M$ for every two-sided ideal $\mathfrak {I}$ of $S$, where ${{\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}}^2(M) = {{\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}} ({{\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}}(M))$. In this paper, we show that $M$ is quasi-t-dual Baer if and only if ${{\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}}^2(M) $ is a direct summand of $M$ and ${\hspace{0.83328pt}\overline{\hspace{-1.94443pt}Z \hspace{-0.27771pt}}\hspace{0.83328pt}}^2(M)$ is a quasi-dual Baer module. It is also shown that any direct summand of a quasi-t-dual Baer module inherits the property. The last part of the paper is devoted to the comparison of the notions of quasi-dual Baer modules and quasi-t-dual Baer modules. Also, right quasi-t-dual Baer rings are investigated.
LA - eng
KW - fully invariant submodule; quasi-dual Baer module; quasi-dual Baer ring; quasi-t-dual Baer module; quasi-t-dual Baer ring
UR - http://eudml.org/doc/299325
ER -
References
top- Amouzegar T., Talebi Y., On quasi-dual Baer modules, TWMS J. Pure Appl. Math. 4 (2013), no. 1, 78–86. MR3097682
- Amouzegar T., Tütüncü D. K., Talebi Y., 10.1007/s10013-013-0045-z, Vietnam J. Math. 42 (2014), no. 2, 159–169. MR3218852DOI10.1007/s10013-013-0045-z
- Atani S. E., Khoramdel M., Hesari S. D. P., T-dual Rickart modules, Bull. Iranian Math. Soc. 42 (2016), no. 3, 627–642. MR3518208
- Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting Modules, Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006. Zbl1102.16001MR2253001
- Clark W. E., 10.1215/S0012-7094-67-03446-1, Duke Math. J. 34 (1967), 417–424. Zbl0204.04502MR0214626DOI10.1215/S0012-7094-67-03446-1
- Cozzens J. H., 10.1090/S0002-9904-1970-12370-9, Bull. Amer. Math. Soc. 76 (1970), 75–79. MR0258886DOI10.1090/S0002-9904-1970-12370-9
- Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending Modules, Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, 1994. Zbl0841.16001MR1312366
- Haghany A., Karamzadeh O. A. S., Vedadi M. R., Rings with all finitely generated modules retractable, Bull. Iranian Math. Soc. 35 (2009), no. 2, 37–45, 270. MR2642924
- Harada M., On small submodules in the total quotient ring of a commutative ring, Rev. Un. Mat. Argentina 28 (1977), 99–102. MR0469899
- Kaplansky I., 10.1090/S0002-9947-1952-0046349-0, Trans. Amer. Math. Soc. 72 (1952), 327–340. MR0046349DOI10.1090/S0002-9947-1952-0046349-0
- Keskin Tütüncü D., Orhan Ertaş N., Smith P. F., Tribak R., 10.3906/mat-1210-15, Turkish J. Math. 38 (2014), no. 4, 649–657. MR3195734DOI10.3906/mat-1210-15
- Lee G., Rizvi S. T., Roman C. S., 10.1080/00927872.2010.515639, Comm. Algebra 39 (2011), no. 11, 4036–4058. MR2855110DOI10.1080/00927872.2010.515639
- Mohamed S. H., Müller B. J., Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990. Zbl0701.16001MR1084376
- Rizvi S. T., Roman C. S., 10.1081/AGB-120027854, Comm. Algebra 32 (2004), no. 1, 103–123. MR2036224DOI10.1081/AGB-120027854
- Smith P. F., 10.1016/j.jpaa.2004.09.001, J. Pure Appl. Algebra 197 (2005), no. 1–3, 305–321. MR2123991DOI10.1016/j.jpaa.2004.09.001
- Talebi Y., Vanaja N., 10.1080/00927870209342390, Comm. Algebra 30 (2002), no. 3, 1449–1460. MR1892609DOI10.1080/00927870209342390
- Tribak R., Talebi Y., Hosseinpour M., 10.1007/s40065-021-00316-2, Arab. J. Math. (Springer) 10 (2021), no. 2, 497–504. MR4283974DOI10.1007/s40065-021-00316-2
- Tribak R., Talebi Y., Hosseinpour M., Abdi M., 10.1007/s10013-018-0270-6, Vietnam J. Math. 46 (2018), no. 3, 653–664. MR3820454DOI10.1007/s10013-018-0270-6
- Tribak R., Talebi Y., Hosseinpour M., Abdi M., 10.1007/s40590-020-00301-3, Bol. Soc. Mat. Mex. 26 (2020), no. 3, 973–989. MR4155340DOI10.1007/s40590-020-00301-3
- Tribak R., Tütüncü K. D., On -semiperfect modules, East-West J. Math. 8 (2006), no. 2, 195–205. MR2442425
- Zöschinger H., 10.1007/s10998-006-0007-2, Period. Math. Hungar. 52 (2006), no. 2, 105–128 (German, English summary). MR2265652DOI10.1007/s10998-006-0007-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.