New nonlinear Picone identities with variable exponents and applications

Hichem Khelifi; Youssef El Hadfi

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 4, page 459-473
  • ISSN: 0010-2628

Abstract

top
This paper introduces two novel nonlinear anisotropic Picone identities with variable exponents that expand upon the traditional identity used for the ordinary Laplace equation. Additionally, the research explores potential applications of these findings in anisotropic Sobolev spaces featuring variable exponents.

How to cite

top

Khelifi, Hichem, and El Hadfi, Youssef. "New nonlinear Picone identities with variable exponents and applications." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 459-473. <http://eudml.org/doc/299330>.

@article{Khelifi2023,
abstract = {This paper introduces two novel nonlinear anisotropic Picone identities with variable exponents that expand upon the traditional identity used for the ordinary Laplace equation. Additionally, the research explores potential applications of these findings in anisotropic Sobolev spaces featuring variable exponents.},
author = {Khelifi, Hichem, El Hadfi, Youssef},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {anisotropic Picone identity; variable exponent},
language = {eng},
number = {4},
pages = {459-473},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {New nonlinear Picone identities with variable exponents and applications},
url = {http://eudml.org/doc/299330},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Khelifi, Hichem
AU - El Hadfi, Youssef
TI - New nonlinear Picone identities with variable exponents and applications
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 459
EP - 473
AB - This paper introduces two novel nonlinear anisotropic Picone identities with variable exponents that expand upon the traditional identity used for the ordinary Laplace equation. Additionally, the research explores potential applications of these findings in anisotropic Sobolev spaces featuring variable exponents.
LA - eng
KW - anisotropic Picone identity; variable exponent
UR - http://eudml.org/doc/299330
ER -

References

top
  1. Abramowitz M., Stegun I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, 1964. Zbl0643.33001MR0167642
  2. Allegretto W., 10.1090/S0002-9939-07-08718-7, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2177–2185. MR2299495DOI10.1090/S0002-9939-07-08718-7
  3. Allegretto W., Huang Y. X., A Picone’s identity for the p -Laplacian and applications, Nonlinear Anal. 32 (1998), no. 7, 819–830. MR1618334
  4. Boccardo L., Gallouët T., Marcellini P., 10.57262/die/1367969997, Differential Integral Equations 9 (1996), no. 1, 209–212. MR1364043DOI10.57262/die/1367969997
  5. Chen Y., Levine S., Rao M., 10.1137/050624522, SIAM J. Appl. Math. 66 (2006), no. 4, 1383–1406. MR2246061DOI10.1137/050624522
  6. Fan X., 10.1080/17476931003728412, Complex Var. Elliptic Equ. 56 (2011), no. 7–9, 623–642. MR2832206DOI10.1080/17476931003728412
  7. Feng T., Cui X., Anisotropic Picone identities and anisotropic Hardy inequalities, J. Inequal. Appl. 2017 (2017), Paper No. 16, 9 pages. MR3596962
  8. Feng T., Han J., A new variable exponent Picone identity and applications, Math. Inequal. Appl. 22 (2019), no. 1, 65–75. MR3905971
  9. Feng T., Zhang K., A nonlinear Picone identity for anisotropic Laplace operator and its applications, J. of Math. (PRC). 40 (2020), no. 3, 283–290. 
  10. Jikov V. V., Kozlov S. M., Oleĭnik O. A., Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994. MR1329546
  11. Khelifi H., 10.1007/s40574-023-00395-3, Boll. Unione Mat. Ital. 17 (2024), no. 1, 149–174. MR4703444DOI10.1007/s40574-023-00395-3
  12. Khelifi H., Anisotropic parabolic-elliptic systems with degenerate thermal conductivity, accepted at Applicable Analysis (2023), 33 pages. MR4774280
  13. Khelifi H., Ait-Mahiout K., Regularity for solutions of elliptic p ( x ) - Laplacian type equations with lower order terms and Hardy potential, accepted at Ricerche Mat. (2023). MR4798155
  14. Khelifi H., El Hadfi Y., 10.23939/mmc2021.04.705, Math. Model. Comput. 8 (2021), no. 4, 705–715. DOI10.23939/mmc2021.04.705
  15. Khelifi H., Mokhtari F., Nonlinear degenerate anisotropic elliptic equations with variable exponents and L 1 data, J. Part. Diff. Eq. 33 (2020), no. 1, 1–16. MR4218038
  16. Kováčik O., Rákosník J., 10.21136/CMJ.1991.102493, Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618. MR1134951DOI10.21136/CMJ.1991.102493
  17. Mihăilescu M., Pucci P., Rădulescu V., 10.1016/j.crma.2007.10.012, C. R. Math. Acad. Sci. Paris 345 (2007), no. 10, 561–566. MR2374465DOI10.1016/j.crma.2007.10.012
  18. Mihăilescu M., Rădulescu V., 10.1090/S0002-9939-07-08815-6, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929–2937. MR2317971DOI10.1090/S0002-9939-07-08815-6
  19. Naceri M., Singular anisotropic elliptic problems with variable exponents, Mem. Differ. Equ. Math. Phys. 85 (2022), 119–132. MR4433412
  20. Picone M., Sui valori eccezionali di un parametro da cui dipende un équazione differenziale lineare ordinaria del second órdine, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11 (1910), 144 pages (Italian). MR1556637
  21. Picone M., Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo ordine, Rend. Mat. Acc. Lincei 17 (1911), no. 5, 213–219 (Italian). 
  22. Yoshida N., Picone identity for quasilinear elliptic equations with p ( x ) -Laplacians and Sturmianian comparison theory, Appl. Math. Comput. 225 (2013), 79–91. MR3129631
  23. Zouatini M.A., Mokhtari F., Khelifi H., 10.23939/mmc2023.01.133, Math. Model. Comput. 10 (2023), no. 1, 133–146. MR4703444DOI10.23939/mmc2023.01.133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.