Almost demi Dunford--Pettis operators on Banach lattices

Hedi Benkhaled

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 4, page 429-438
  • ISSN: 0010-2628

Abstract

top
We introduce new concept of almost demi Dunford–Pettis operators. Let E be a Banach lattice. An operator T from E into E is said to be almost demi Dunford–Pettis if, for every sequence { x n } in E + such that x n 0 in σ ( E , E ' ) and x n - T x n 0 as n , we have x n 0 as n . In addition, we study some properties of this class of operators and its relationships with others known operators.

How to cite

top

Benkhaled, Hedi. "Almost demi Dunford--Pettis operators on Banach lattices." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 429-438. <http://eudml.org/doc/299332>.

@article{Benkhaled2023,
abstract = {We introduce new concept of almost demi Dunford–Pettis operators. Let $E$ be a Banach lattice. An operator $T$ from $E$ into $E$ is said to be almost demi Dunford–Pettis if, for every sequence $\lbrace x_\{n\}\rbrace $ in $E_\{+\}$ such that $x_\{n\}\rightarrow 0$ in $\sigma (E,E^\{\prime \})$ and $\Vert x_\{n\}-Tx_\{n\}\Vert \rightarrow 0$ as $n\rightarrow \infty $, we have $\Vert x_\{n\}\Vert \rightarrow 0$ as $n\rightarrow \infty $. In addition, we study some properties of this class of operators and its relationships with others known operators.},
author = {Benkhaled, Hedi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {almost demi Dunford--Pettis operator; Banach lattice; positive Schur property},
language = {eng},
number = {4},
pages = {429-438},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Almost demi Dunford--Pettis operators on Banach lattices},
url = {http://eudml.org/doc/299332},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Benkhaled, Hedi
TI - Almost demi Dunford--Pettis operators on Banach lattices
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 429
EP - 438
AB - We introduce new concept of almost demi Dunford–Pettis operators. Let $E$ be a Banach lattice. An operator $T$ from $E$ into $E$ is said to be almost demi Dunford–Pettis if, for every sequence $\lbrace x_{n}\rbrace $ in $E_{+}$ such that $x_{n}\rightarrow 0$ in $\sigma (E,E^{\prime })$ and $\Vert x_{n}-Tx_{n}\Vert \rightarrow 0$ as $n\rightarrow \infty $, we have $\Vert x_{n}\Vert \rightarrow 0$ as $n\rightarrow \infty $. In addition, we study some properties of this class of operators and its relationships with others known operators.
LA - eng
KW - almost demi Dunford--Pettis operator; Banach lattice; positive Schur property
UR - http://eudml.org/doc/299332
ER -

References

top
  1. Abramovich Y. A., Aliprantis C. D., 10.1090/gsm/051/02, Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002. Zbl1022.47001MR1921782DOI10.1090/gsm/051/02
  2. Aliprantis C. D., Burkinshaw O., Positive Operators, Pure and Applied Mathematics, 119, Academic Press, Orlando, 1985. Zbl1098.47001MR0809372
  3. Aqzzouz B., Elbour A., 10.1007/s11117-010-0083-7, Positivity 15 (2011), no. 3, 369–380. MR2832593DOI10.1007/s11117-010-0083-7
  4. Aqzzouz B., Elbour A., Wickstead A. W., 10.1007/s11117-010-0050-3, Positivity 15 (2011), no. 2, 185–197. MR2803812DOI10.1007/s11117-010-0050-3
  5. Benkhaled H., Elleuch A., Jeribi A., The class of order weakly demicompact operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2) (2020), no. 2, Paper No. 76, 8 pages. MR4056881
  6. Benkhaled H., Hajji M., Jeribi A., 10.2298/FIL2213319B, Filomat 36 (2022), no. 13, 4319–4329. MR4554326DOI10.2298/FIL2213319B
  7. Benkhaled H., Hajji M., Jeribi A., On the class of demi Dunford–Pettis operators, Rend. Circ. Mat. Palermo Ser. (2) 72 (2022), no. 2, 901–911. MR4559078
  8. Benkhaled H., Jeribi A., On B -weakly demicompact operators on Banach lattices, Vladikavkaz. Mat. Zh. 25 (2023), no. 4, 20–28. MR4680962
  9. Guerre-Delabrière S., Classical Sequences in Banach Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 166, Marcel Dekker, New York, 1992. MR1197117
  10. Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin, 1991. Zbl0743.46015MR1128093
  11. Petryshyn W. V., 10.1016/0022-247X(66)90027-8, J. Math. Anal. Appl. 14 (1966), 276–284. MR0194942DOI10.1016/0022-247X(66)90027-8
  12. Wnuk W., Banach lattice with weak Dunford–Pettis property, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 227–236. MR1282338

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.