Almost demi Dunford--Pettis operators on Banach lattices
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 4, page 429-438
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBenkhaled, Hedi. "Almost demi Dunford--Pettis operators on Banach lattices." Commentationes Mathematicae Universitatis Carolinae 64.4 (2023): 429-438. <http://eudml.org/doc/299332>.
@article{Benkhaled2023,
abstract = {We introduce new concept of almost demi Dunford–Pettis operators. Let $E$ be a Banach lattice. An operator $T$ from $E$ into $E$ is said to be almost demi Dunford–Pettis if, for every sequence $\lbrace x_\{n\}\rbrace $ in $E_\{+\}$ such that $x_\{n\}\rightarrow 0$ in $\sigma (E,E^\{\prime \})$ and $\Vert x_\{n\}-Tx_\{n\}\Vert \rightarrow 0$ as $n\rightarrow \infty $, we have $\Vert x_\{n\}\Vert \rightarrow 0$ as $n\rightarrow \infty $. In addition, we study some properties of this class of operators and its relationships with others known operators.},
author = {Benkhaled, Hedi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {almost demi Dunford--Pettis operator; Banach lattice; positive Schur property},
language = {eng},
number = {4},
pages = {429-438},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Almost demi Dunford--Pettis operators on Banach lattices},
url = {http://eudml.org/doc/299332},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Benkhaled, Hedi
TI - Almost demi Dunford--Pettis operators on Banach lattices
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 4
SP - 429
EP - 438
AB - We introduce new concept of almost demi Dunford–Pettis operators. Let $E$ be a Banach lattice. An operator $T$ from $E$ into $E$ is said to be almost demi Dunford–Pettis if, for every sequence $\lbrace x_{n}\rbrace $ in $E_{+}$ such that $x_{n}\rightarrow 0$ in $\sigma (E,E^{\prime })$ and $\Vert x_{n}-Tx_{n}\Vert \rightarrow 0$ as $n\rightarrow \infty $, we have $\Vert x_{n}\Vert \rightarrow 0$ as $n\rightarrow \infty $. In addition, we study some properties of this class of operators and its relationships with others known operators.
LA - eng
KW - almost demi Dunford--Pettis operator; Banach lattice; positive Schur property
UR - http://eudml.org/doc/299332
ER -
References
top- Abramovich Y. A., Aliprantis C. D., 10.1090/gsm/051/02, Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002. Zbl1022.47001MR1921782DOI10.1090/gsm/051/02
- Aliprantis C. D., Burkinshaw O., Positive Operators, Pure and Applied Mathematics, 119, Academic Press, Orlando, 1985. Zbl1098.47001MR0809372
- Aqzzouz B., Elbour A., 10.1007/s11117-010-0083-7, Positivity 15 (2011), no. 3, 369–380. MR2832593DOI10.1007/s11117-010-0083-7
- Aqzzouz B., Elbour A., Wickstead A. W., 10.1007/s11117-010-0050-3, Positivity 15 (2011), no. 2, 185–197. MR2803812DOI10.1007/s11117-010-0050-3
- Benkhaled H., Elleuch A., Jeribi A., The class of order weakly demicompact operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2) (2020), no. 2, Paper No. 76, 8 pages. MR4056881
- Benkhaled H., Hajji M., Jeribi A., 10.2298/FIL2213319B, Filomat 36 (2022), no. 13, 4319–4329. MR4554326DOI10.2298/FIL2213319B
- Benkhaled H., Hajji M., Jeribi A., On the class of demi Dunford–Pettis operators, Rend. Circ. Mat. Palermo Ser. (2) 72 (2022), no. 2, 901–911. MR4559078
- Benkhaled H., Jeribi A., On -weakly demicompact operators on Banach lattices, Vladikavkaz. Mat. Zh. 25 (2023), no. 4, 20–28. MR4680962
- Guerre-Delabrière S., Classical Sequences in Banach Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 166, Marcel Dekker, New York, 1992. MR1197117
- Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin, 1991. Zbl0743.46015MR1128093
- Petryshyn W. V., 10.1016/0022-247X(66)90027-8, J. Math. Anal. Appl. 14 (1966), 276–284. MR0194942DOI10.1016/0022-247X(66)90027-8
- Wnuk W., Banach lattice with weak Dunford–Pettis property, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 227–236. MR1282338
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.