Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space
Weiller F. C. Barboza; H. F. de Lima; M. A. Velásquez
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 1, page 39-61
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBarboza, Weiller F. C., de Lima, H. F., and Velásquez, M. A.. "Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 39-61. <http://eudml.org/doc/299333>.
@article{Barboza2023,
abstract = {In this paper, we deal with $n$-dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space $L_\{p\}^\{n+p\}$ of index $p>1$, which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric submanifold of the ambient space. For this, we use three main core analytical tools: a suitable version of the Omori–Yau maximum principle, parabolicity with respect to a modified Cheng–Yau operator and a certain integrability property.},
author = {Barboza, Weiller F. C., de Lima, H. F., Velásquez, M. A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {locally symmetric semi-Riemannian space; mean curvature vector field; complete linear Weingarten spacelike submanifold; totally umbilical submanifold; isoparametric submanifold; $\mathcal \{L\}$-parabolicity},
language = {eng},
number = {1},
pages = {39-61},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space},
url = {http://eudml.org/doc/299333},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Barboza, Weiller F. C.
AU - de Lima, H. F.
AU - Velásquez, M. A.
TI - Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 39
EP - 61
AB - In this paper, we deal with $n$-dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space $L_{p}^{n+p}$ of index $p>1$, which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric submanifold of the ambient space. For this, we use three main core analytical tools: a suitable version of the Omori–Yau maximum principle, parabolicity with respect to a modified Cheng–Yau operator and a certain integrability property.
LA - eng
KW - locally symmetric semi-Riemannian space; mean curvature vector field; complete linear Weingarten spacelike submanifold; totally umbilical submanifold; isoparametric submanifold; $\mathcal {L}$-parabolicity
UR - http://eudml.org/doc/299333
ER -
References
top- Alías L. J., Mastrolia P., Rigoli M., Maximum Principles and Geometric Applications, Springer Monographs in Mathematics, Springer, Cham, 2016. MR3445380
- Araújo J. G., Barboza W. F., de Lima H. F., Velásquez M. A. L., 10.1007/s13366-019-00469-4, Beitr. Algebra Geom. 61 (2020), no. 2, 267–282. MR4090931DOI10.1007/s13366-019-00469-4
- Araújo J. G., de Lima H. F., dos Santos F. R., Velásquez M. A. L., Characterizations of complete linear Weingarten spacelike submanifolds in a locally symmetric semi-Riemannian manifold, Extracta Math. 32 (2017), no. 1, 55–81. MR3726524
- Baek J. O., Cheng Q.-M., Suh Y. J., 10.1016/S0393-0440(03)00090-1, J. Geom. Phys. 49 (2004), no. 2, 231–247. MR2077302DOI10.1016/S0393-0440(03)00090-1
- Beem J. K., Ehrlich P. E., Easley K. L., Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Mathematics, 202, Marcel Dekker, New York, 1996. Zbl0846.53001MR1384756
- Brendle S., 10.1215/00127094-2009-061, Duke Math. J. 151 (2010), no. 1, 1–21. MR2573825DOI10.1215/00127094-2009-061
- Calabi E., Examples of Bernstein problems for some nonlinear equations, Proc. Sympos. Pure Math. 15 (1970), 223–230. MR0264210
- Caminha A., 10.1007/s00574-011-0015-6, Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 2, 277–300. Zbl1242.53068MR2833803DOI10.1007/s00574-011-0015-6
- Cheng S. Y., Yau S. T., 10.2307/1970963, Ann. of Math. (2) 104 (1976), no. 3, 407–419. MR0431061DOI10.2307/1970963
- Cheng S. Y., Yau S. T., 10.1007/BF01425237, Math. Ann. 225 (1977), no. 3, 195–204. Zbl0349.53041MR0431043DOI10.1007/BF01425237
- Chern S. S., do Carmo M. P., Kobayashi S., Minimal submanifolds of a sphere with second fundamental form of constant length, Global Analysis, Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, 1968, Amer. Math. Soc., Providence, 1970, pages 223–230. MR0273546
- de Lima H. F., de Lima J. R., 10.1017/S0017089512000754, Glasg. Math. J. 55 (2013), no. 3, 567–579. MR3084661DOI10.1017/S0017089512000754
- de Lima H. F., de Lima J. R., 10.1007/s00025-012-0237-y, Results Math. 63 (2013), no. 3–4, 865–876. MR3057342DOI10.1007/s00025-012-0237-y
- de Lima H. F., dos Santos F. R., Araújo J. G., Velásquez M. A. L., Complete maximal spacelike submanifolds immersed in a locally symmetric semi-Riemannian space, Houston J. Math. 43 (2017), no. 4, 1099–1110. MR3766359
- de Lima H. F., dos Santos F. R., Gomes J. N., Velásquez M. A. L., 10.1007/s13348-015-0145-z, Collect. Math. 67 (2016), no. 3, 379–397. MR3536051DOI10.1007/s13348-015-0145-z
- de Lima H. F., dos Santos F. R., Velásquez M. A. L., 10.1007/s40863-017-0075-7, São Paulo J. Math. Sci. 11 (2017), no. 2, 456–470. MR3716700DOI10.1007/s40863-017-0075-7
- Galloway G. J., Senovilla J. M. M., 10.1088/0264-9381/27/15/152002, Classical Quantum Gravity 27 (2010), no. 15, 152002, 10 pages. MR2659235DOI10.1088/0264-9381/27/15/152002
- Grigor'yan A., 10.1090/S0273-0979-99-00776-4, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135–249. Zbl0927.58019MR1659871DOI10.1090/S0273-0979-99-00776-4
- Hawking S. W., Ellis G. F. R., The Large Scale Structure of Space-time, Cambridge Monographs on Mathematical Physics, 1, Cambridge University Press, London, 1973. MR4615777
- Ishihara T., 10.1307/mmj/1029003815, Michigan Math. J. 35 (1988), no. 3, 345–352. MR0978304DOI10.1307/mmj/1029003815
- Liang Z., Zhang X., 10.1063/1.3682242, J. Math. Phys. 53 (2012), no. 2, 022502, 10 pages. MR2920460DOI10.1063/1.3682242
- Liu J., Sun Z., 10.1016/j.jmaa.2009.10.029, J. Math. Anal. App. 364 (2010), no. 1, 195–203. MR2576063DOI10.1016/j.jmaa.2009.10.029
- Marsden J. E., Tipler F. J., 10.1016/0370-1573(80)90154-4, Phys. Rep. 66 (1980), no. 3, 109–139. MR0598585DOI10.1016/0370-1573(80)90154-4
- Micallef M. J., Wang M. Y., 10.1215/S0012-7094-93-07224-9, Duke Math. J. 72 (1993), no. 3, 649–672. MR1253619DOI10.1215/S0012-7094-93-07224-9
- Nishikawa S., 10.1017/S0027763000021024, Nagoya Math. J. 95 (1984), 117–124. MR0759469DOI10.1017/S0027763000021024
- O'Neill B., Semi-Riemannian Geometry, With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR0719023
- Penrose R., 10.1103/PhysRevLett.14.57, Phys. Rev. Lett. 14 (1965), 57–59. MR0172678DOI10.1103/PhysRevLett.14.57
- Pigola S., Rigoli M., Setti A. G., 10.1016/j.jfa.2004.05.009, J. Funct. Anal. 219 (2005), no. 2, 400–432. MR2109258DOI10.1016/j.jfa.2004.05.009
- Pigola S., Rigoli M., Setti A. G., Maximum Principles on Riemannian Manifolds and Applications, Mem. Amer. Math. Soc., 174, no. 822, 2005. MR2116555
- Senovilla J. M. M., Singularity theorems in general relativity: Achievements and open questions, in Einstein and the Changing Worldviews of Physics, Einstein Studies, 12, Birkhäuser, Boston, 2011, pages 305–316.
- Stumbles S. M., 10.1016/0003-4916(81)90240-2, Ann. Physics 133 (1981), no. 1, 28–56. MR0626082DOI10.1016/0003-4916(81)90240-2
- Tod K. P., 10.1016/S0926-2245(99)00024-8, Differential Geom. Appl. 11 (1999), no. 1, 55–67. MR1702467DOI10.1016/S0926-2245(99)00024-8
- Treibergs A. E., 10.1007/BF01404755, Invent. Math. 66 (1982), no. 1, 39–56. MR0652645DOI10.1007/BF01404755
- Xu H.-W., Gu J.-R., 10.1007/s00208-013-0957-7, Math. Ann. 358 (2014), no. 1–2, 169–193. MR3157995DOI10.1007/s00208-013-0957-7
- Yau S. T., 10.1512/iumj.1976.25.25051, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR0417452DOI10.1512/iumj.1976.25.25051
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.