Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space

Weiller F. C. Barboza; H. F. de Lima; M. A. Velásquez

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 1, page 39-61
  • ISSN: 0010-2628

Abstract

top
In this paper, we deal with n -dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space L p n + p of index p > 1 , which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric submanifold of the ambient space. For this, we use three main core analytical tools: a suitable version of the Omori–Yau maximum principle, parabolicity with respect to a modified Cheng–Yau operator and a certain integrability property.

How to cite

top

Barboza, Weiller F. C., de Lima, H. F., and Velásquez, M. A.. "Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 39-61. <http://eudml.org/doc/299333>.

@article{Barboza2023,
abstract = {In this paper, we deal with $n$-dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space $L_\{p\}^\{n+p\}$ of index $p>1$, which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric submanifold of the ambient space. For this, we use three main core analytical tools: a suitable version of the Omori–Yau maximum principle, parabolicity with respect to a modified Cheng–Yau operator and a certain integrability property.},
author = {Barboza, Weiller F. C., de Lima, H. F., Velásquez, M. A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {locally symmetric semi-Riemannian space; mean curvature vector field; complete linear Weingarten spacelike submanifold; totally umbilical submanifold; isoparametric submanifold; $\mathcal \{L\}$-parabolicity},
language = {eng},
number = {1},
pages = {39-61},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space},
url = {http://eudml.org/doc/299333},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Barboza, Weiller F. C.
AU - de Lima, H. F.
AU - Velásquez, M. A.
TI - Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 39
EP - 61
AB - In this paper, we deal with $n$-dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space $L_{p}^{n+p}$ of index $p>1$, which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric submanifold of the ambient space. For this, we use three main core analytical tools: a suitable version of the Omori–Yau maximum principle, parabolicity with respect to a modified Cheng–Yau operator and a certain integrability property.
LA - eng
KW - locally symmetric semi-Riemannian space; mean curvature vector field; complete linear Weingarten spacelike submanifold; totally umbilical submanifold; isoparametric submanifold; $\mathcal {L}$-parabolicity
UR - http://eudml.org/doc/299333
ER -

References

top
  1. Alías L. J., Mastrolia P., Rigoli M., Maximum Principles and Geometric Applications, Springer Monographs in Mathematics, Springer, Cham, 2016. MR3445380
  2. Araújo J. G., Barboza W. F., de Lima H. F., Velásquez M. A. L., 10.1007/s13366-019-00469-4, Beitr. Algebra Geom. 61 (2020), no. 2, 267–282. MR4090931DOI10.1007/s13366-019-00469-4
  3. Araújo J. G., de Lima H. F., dos Santos F. R., Velásquez M. A. L., Characterizations of complete linear Weingarten spacelike submanifolds in a locally symmetric semi-Riemannian manifold, Extracta Math. 32 (2017), no. 1, 55–81. MR3726524
  4. Baek J. O., Cheng Q.-M., Suh Y. J., 10.1016/S0393-0440(03)00090-1, J. Geom. Phys. 49 (2004), no. 2, 231–247. MR2077302DOI10.1016/S0393-0440(03)00090-1
  5. Beem J. K., Ehrlich P. E., Easley K. L., Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Mathematics, 202, Marcel Dekker, New York, 1996. Zbl0846.53001MR1384756
  6. Brendle S., 10.1215/00127094-2009-061, Duke Math. J. 151 (2010), no. 1, 1–21. MR2573825DOI10.1215/00127094-2009-061
  7. Calabi E., Examples of Bernstein problems for some nonlinear equations, Proc. Sympos. Pure Math. 15 (1970), 223–230. MR0264210
  8. Caminha A., 10.1007/s00574-011-0015-6, Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 2, 277–300. Zbl1242.53068MR2833803DOI10.1007/s00574-011-0015-6
  9. Cheng S. Y., Yau S. T., 10.2307/1970963, Ann. of Math. (2) 104 (1976), no. 3, 407–419. MR0431061DOI10.2307/1970963
  10. Cheng S. Y., Yau S. T., 10.1007/BF01425237, Math. Ann. 225 (1977), no. 3, 195–204. Zbl0349.53041MR0431043DOI10.1007/BF01425237
  11. Chern S. S., do Carmo M. P., Kobayashi S., Minimal submanifolds of a sphere with second fundamental form of constant length, Global Analysis, Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, 1968, Amer. Math. Soc., Providence, 1970, pages 223–230. MR0273546
  12. de Lima H. F., de Lima J. R., 10.1017/S0017089512000754, Glasg. Math. J. 55 (2013), no. 3, 567–579. MR3084661DOI10.1017/S0017089512000754
  13. de Lima H. F., de Lima J. R., 10.1007/s00025-012-0237-y, Results Math. 63 (2013), no. 3–4, 865–876. MR3057342DOI10.1007/s00025-012-0237-y
  14. de Lima H. F., dos Santos F. R., Araújo J. G., Velásquez M. A. L., Complete maximal spacelike submanifolds immersed in a locally symmetric semi-Riemannian space, Houston J. Math. 43 (2017), no. 4, 1099–1110. MR3766359
  15. de Lima H. F., dos Santos F. R., Gomes J. N., Velásquez M. A. L., 10.1007/s13348-015-0145-z, Collect. Math. 67 (2016), no. 3, 379–397. MR3536051DOI10.1007/s13348-015-0145-z
  16. de Lima H. F., dos Santos F. R., Velásquez M. A. L., 10.1007/s40863-017-0075-7, São Paulo J. Math. Sci. 11 (2017), no. 2, 456–470. MR3716700DOI10.1007/s40863-017-0075-7
  17. Galloway G. J., Senovilla J. M. M., 10.1088/0264-9381/27/15/152002, Classical Quantum Gravity 27 (2010), no. 15, 152002, 10 pages. MR2659235DOI10.1088/0264-9381/27/15/152002
  18. Grigor'yan A., 10.1090/S0273-0979-99-00776-4, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135–249. Zbl0927.58019MR1659871DOI10.1090/S0273-0979-99-00776-4
  19. Hawking S. W., Ellis G. F. R., The Large Scale Structure of Space-time, Cambridge Monographs on Mathematical Physics, 1, Cambridge University Press, London, 1973. MR4615777
  20. Ishihara T., 10.1307/mmj/1029003815, Michigan Math. J. 35 (1988), no. 3, 345–352. MR0978304DOI10.1307/mmj/1029003815
  21. Liang Z., Zhang X., 10.1063/1.3682242, J. Math. Phys. 53 (2012), no. 2, 022502, 10 pages. MR2920460DOI10.1063/1.3682242
  22. Liu J., Sun Z., 10.1016/j.jmaa.2009.10.029, J. Math. Anal. App. 364 (2010), no. 1, 195–203. MR2576063DOI10.1016/j.jmaa.2009.10.029
  23. Marsden J. E., Tipler F. J., 10.1016/0370-1573(80)90154-4, Phys. Rep. 66 (1980), no. 3, 109–139. MR0598585DOI10.1016/0370-1573(80)90154-4
  24. Micallef M. J., Wang M. Y., 10.1215/S0012-7094-93-07224-9, Duke Math. J. 72 (1993), no. 3, 649–672. MR1253619DOI10.1215/S0012-7094-93-07224-9
  25. Nishikawa S., 10.1017/S0027763000021024, Nagoya Math. J. 95 (1984), 117–124. MR0759469DOI10.1017/S0027763000021024
  26. O'Neill B., Semi-Riemannian Geometry, With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR0719023
  27. Penrose R., 10.1103/PhysRevLett.14.57, Phys. Rev. Lett. 14 (1965), 57–59. MR0172678DOI10.1103/PhysRevLett.14.57
  28. Pigola S., Rigoli M., Setti A. G., 10.1016/j.jfa.2004.05.009, J. Funct. Anal. 219 (2005), no. 2, 400–432. MR2109258DOI10.1016/j.jfa.2004.05.009
  29. Pigola S., Rigoli M., Setti A. G., Maximum Principles on Riemannian Manifolds and Applications, Mem. Amer. Math. Soc., 174, no. 822, 2005. MR2116555
  30. Senovilla J. M. M., Singularity theorems in general relativity: Achievements and open questions, in Einstein and the Changing Worldviews of Physics, Einstein Studies, 12, Birkhäuser, Boston, 2011, pages 305–316. 
  31. Stumbles S. M., 10.1016/0003-4916(81)90240-2, Ann. Physics 133 (1981), no. 1, 28–56. MR0626082DOI10.1016/0003-4916(81)90240-2
  32. Tod K. P., 10.1016/S0926-2245(99)00024-8, Differential Geom. Appl. 11 (1999), no. 1, 55–67. MR1702467DOI10.1016/S0926-2245(99)00024-8
  33. Treibergs A. E., 10.1007/BF01404755, Invent. Math. 66 (1982), no. 1, 39–56. MR0652645DOI10.1007/BF01404755
  34. Xu H.-W., Gu J.-R., 10.1007/s00208-013-0957-7, Math. Ann. 358 (2014), no. 1–2, 169–193. MR3157995DOI10.1007/s00208-013-0957-7
  35. Yau S. T., 10.1512/iumj.1976.25.25051, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR0417452DOI10.1512/iumj.1976.25.25051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.