The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space”

Almost invariant submanifolds for compact group actions

Alan Weinstein (2000)

Journal of the European Mathematical Society

Similarity:

We define a C 1 distance between submanifolds of a riemannian manifold M and show that, if a compact submanifold N is not moved too much under the isometric action of a compact group G , there is a G -invariant submanifold C 1 -close to N . The proof involves a procedure of averaging nearby submanifolds of riemannian manifolds in a symmetric way. The procedure combines averaging techniques of Cartan, Grove/Karcher, and de la Harpe/Karoubi with Whitney’s idea of realizing submanifolds as zeros...

On the nonexistence of stable minimal submanifolds and the Lawson-Simons conjecture

Ze-Jun Hu, Guo-Xin Wei (2003)

Colloquium Mathematicae

Similarity:

Let M̅ be a compact Riemannian manifold with sectional curvature K M ̅ satisfying 1 / 5 < K M ̅ 1 (resp. 2 K M ̅ < 10 ), which can be isometrically immersed as a hypersurface in the Euclidean space (resp. the unit Euclidean sphere). Then there exist no stable compact minimal submanifolds in M̅. This extends Shen and Xu’s result for 1/4-pinched Riemannian manifolds and also suggests a modified version of the well-known Lawson-Simons conjecture.

Global pinching theorems for minimal submanifolds in spheres

Kairen Cai (2003)

Colloquium Mathematicae

Similarity:

Let M be a compact submanifold with parallel mean curvature vector embedded in the unit sphere S n + p ( 1 ) . By using the Sobolev inequalities of P. Li to get L p estimates for the norms of certain tensors related to the second fundamental form of M, we prove some rigidity theorems. Denote by H and | | σ | | p the mean curvature and the L p norm of the square length of the second fundamental form of M. We show that there is a constant C such that if | | σ | | n / 2 < C , then M is a minimal submanifold in the sphere S n + p - 1 ( 1 + H ² ) with sectional...

On Deszcz symmetries of Wintgen ideal submanifolds

Miroslava Petrović-Torgašev, Leopold C. A. Verstraelen (2008)

Archivum Mathematicum

Similarity:

It was conjectured in [26] that, for all submanifolds M n of all real space forms M ˜ n + m ( c ) , the Wintgen inequality ρ H 2 - ρ + c is valid at all points of M , whereby ρ is the normalised scalar curvature of the Riemannian manifold M and H 2 , respectively ρ , are the squared mean curvature and the normalised scalar normal curvature of the submanifold M in the ambient space M ˜ , and this conjecture was shown there to be true whenever codimension m = 2 . For a given Riemannian manifold M , this inequality can be interpreted...

A Weitzenbôck formula for the second fundamental form of a Riemannian foliation

Paolo Piccinni (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Si considera la seconda forma fondamentale α di foliazioni su varietà riemanniane e si ottiene una formula per il laplaciano 2 α - Se ne deducono alcune implicazioni per foliazioni su varietà a curvatura costante.

Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms

Shyamal K. Hui, Richard S. Lemence, Pradip Mandal (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A submanifold M m of a generalized Sasakian-space-form M ¯ 2 n + 1 ( f 1 , f 2 , f 3 ) is said to be C -totally real submanifold if ξ Γ ( T M ) and φ X Γ ( T M ) for all X Γ ( T M ) . In particular, if m = n , then M n is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten-van Kampen connection and Tanaka-Webster connection.

Complete noncompact submanifolds with flat normal bundle

Hai-Ping Fu (2016)

Annales Polonici Mathematici

Similarity:

Let Mⁿ (n ≥ 3) be an n-dimensional complete super stable minimal submanifold in n + p with flat normal bundle. We prove that if the second fundamental form A of M satisfies M i | A | α < , where α ∈ [2(1 - √(2/n)), 2(1 + √(2/n))], then M is an affine n-dimensional plane. In particular, if n ≤ 8 and M | A | d < , d = 1,3, then M is an affine n-dimensional plane. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite L α -norm curvature in ℝ⁷ are considered.

f -biminimal maps between Riemannian manifolds

Yan Zhao, Ximin Liu (2019)

Czechoslovak Mathematical Journal

Similarity:

We give the definition of f -biminimal submanifolds and derive the equation for f -biminimal submanifolds. As an application, we give some examples of f -biminimal manifolds. Finally, we consider f -minimal hypersurfaces in the product space n × 𝕊 1 ( a ) and derive two rigidity theorems.

Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions

Yaning Wang, Ximin Liu (2014)

Annales Polonici Mathematici

Similarity:

We consider an almost Kenmotsu manifold M 2 n + 1 with the characteristic vector field ξ belonging to the (k,μ)’-nullity distribution and h’ ≠ 0 and we prove that M 2 n + 1 is locally isometric to the Riemannian product of an (n+1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold, provided that M 2 n + 1 is ξ-Riemannian-semisymmetric. Moreover, if M 2 n + 1 is a ξ-Riemannian-semisymmetric almost Kenmotsu manifold such that ξ belongs to the (k,μ)-nullity distribution, we prove...

The gap theorems for some extremal submanifolds in a unit sphere

Xi Guo and Lan Wu (2015)

Communications in Mathematics

Similarity:

Let M be an n -dimensional submanifold in the unit sphere S n + p , we call M a k -extremal submanifold if it is a critical point of the functional M ρ 2 k d v . In this paper, we can study gap phenomenon for these submanifolds.

Structure of second-order symmetric Lorentzian manifolds

Oihane F. Blanco, Miguel Sánchez, José M. Senovilla (2013)

Journal of the European Mathematical Society

Similarity:

𝑆𝑒𝑐𝑜𝑛𝑑 - 𝑜𝑟𝑑𝑒𝑟𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛𝑠𝑝𝑎𝑐𝑒𝑠 , that is to say, Lorentzian manifolds with vanishing second derivative R 0 of the curvature tensor R , are characterized by several geometric properties, and explicitly presented. Locally, they are a product M = M 1 × M 2 where each factor is uniquely determined as follows: M 2 is a Riemannian symmetric space and M 1 is either a constant-curvature Lorentzian space or a definite type of plane wave generalizing the Cahen–Wallach family. In the proper case (i.e., R 0 at some point), the curvature...