A survey of some recent results on Clifford algebras in 4

Drahoslava Janovská; Gerhard Opfer

Applications of Mathematics (2023)

  • Volume: 68, Issue: 5, page 571-592
  • ISSN: 0862-7940

Abstract

top
We will study applications of numerical methods in Clifford algebras in 4 , in particular in the skew field of quaternions, in the algebra of coquaternions and in the other nondivision algebras in 4 . In order to gain insight into the multidimensional case, we first consider linear equations in quaternions and coquaternions. Then we will search for zeros of one-sided (simple) quaternion polynomials. Three different classes of zeros can be distinguished. In general, the quaternionic coefficients can be placed on both sides of the powers. Then there are even five different classes of zeros. All results can be extended to other noncommutative algebras in 4 . In the paper by R. Lauterbach and G. Opfer (2014), the authors constructed an exact Jacobi matrix for functions defined in noncommutative algebraic systems without the use of any partial derivative. We applied this technique to find the eigenvalues of the companion matrix as zeros of the companion polynomial by Newton’s method.

How to cite

top

Janovská, Drahoslava, and Opfer, Gerhard. "A survey of some recent results on Clifford algebras in $\mathbb {R}^4$." Applications of Mathematics 68.5 (2023): 571-592. <http://eudml.org/doc/299341>.

@article{Janovská2023,
abstract = {We will study applications of numerical methods in Clifford algebras in $\mathbb \{R\}^4$, in particular in the skew field of quaternions, in the algebra of coquaternions and in the other nondivision algebras in $\mathbb \{R\}^4$. In order to gain insight into the multidimensional case, we first consider linear equations in quaternions and coquaternions. Then we will search for zeros of one-sided (simple) quaternion polynomials. Three different classes of zeros can be distinguished. In general, the quaternionic coefficients can be placed on both sides of the powers. Then there are even five different classes of zeros. All results can be extended to other noncommutative algebras in $\mathbb \{R\}^4$. In the paper by R. Lauterbach and G. Opfer (2014), the authors constructed an exact Jacobi matrix for functions defined in noncommutative algebraic systems without the use of any partial derivative. We applied this technique to find the eigenvalues of the companion matrix as zeros of the companion polynomial by Newton’s method.},
author = {Janovská, Drahoslava, Opfer, Gerhard},
journal = {Applications of Mathematics},
keywords = {linear equations in quaternions and coquaternions; polynomials over $\mathbb \{R\}^4$ algebras; the algebraic eigenvalue problem over noncommutative algebras; Newton’s method; companion matrix and companion polynomial; Niven’s algorithm},
language = {eng},
number = {5},
pages = {571-592},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A survey of some recent results on Clifford algebras in $\mathbb \{R\}^4$},
url = {http://eudml.org/doc/299341},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Janovská, Drahoslava
AU - Opfer, Gerhard
TI - A survey of some recent results on Clifford algebras in $\mathbb {R}^4$
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 5
SP - 571
EP - 592
AB - We will study applications of numerical methods in Clifford algebras in $\mathbb {R}^4$, in particular in the skew field of quaternions, in the algebra of coquaternions and in the other nondivision algebras in $\mathbb {R}^4$. In order to gain insight into the multidimensional case, we first consider linear equations in quaternions and coquaternions. Then we will search for zeros of one-sided (simple) quaternion polynomials. Three different classes of zeros can be distinguished. In general, the quaternionic coefficients can be placed on both sides of the powers. Then there are even five different classes of zeros. All results can be extended to other noncommutative algebras in $\mathbb {R}^4$. In the paper by R. Lauterbach and G. Opfer (2014), the authors constructed an exact Jacobi matrix for functions defined in noncommutative algebraic systems without the use of any partial derivative. We applied this technique to find the eigenvalues of the companion matrix as zeros of the companion polynomial by Newton’s method.
LA - eng
KW - linear equations in quaternions and coquaternions; polynomials over $\mathbb {R}^4$ algebras; the algebraic eigenvalue problem over noncommutative algebras; Newton’s method; companion matrix and companion polynomial; Niven’s algorithm
UR - http://eudml.org/doc/299341
ER -

References

top
  1. Aramanovitch, L. I., 10.1002/mma.1670181504, Math. Methods Appl. Sci. 18 (1995), 1239-1255. (1995) Zbl0841.93060MR1362940DOI10.1002/mma.1670181504
  2. Brenner, J. L., 10.2140/pjm.1951.1.329, Pac. J. Math. 1 (1951), 329-335. (1951) Zbl0043.01402MR0043761DOI10.2140/pjm.1951.1.329
  3. Brody, D. C., Graefe, E.-M., 10.1088/1751-8113/44/7/072001, J. Phys. A, Math. Theor. 44 (2011), Article ID 072001, 9 pages. (2011) Zbl1208.81073MR2769792DOI10.1088/1751-8113/44/7/072001
  4. Cockle, J., 10.1080/14786444908646169, Phil. Mag. (3) 34 (1849), 37-47. (1849) DOI10.1080/14786444908646169
  5. Cockle, J., 10.1080/14786444908646384, Phil. Mag. (3) 35 (1849), 434-437. (1849) DOI10.1080/14786444908646384
  6. Cocle, J., 10.1080/14786444908646257, Phil. Mag. (3) 34 (1849), 406-410. (1849) DOI10.1080/14786444908646257
  7. Eilenberg, S., Niven, I., 10.1090/S0002-9904-1944-08125-1, Bull. Am. Math. Soc. 50 (1944), 246-248. (1944) Zbl0063.01228MR0009588DOI10.1090/S0002-9904-1944-08125-1
  8. Frenkel, I., Libine, M., 10.1016/j.aim.2011.06.001, Adv. Math. 228 (2011), 678-763. (2011) Zbl1264.30037MR2822209DOI10.1016/j.aim.2011.06.001
  9. Gordon, B., Motzkin, T. S., 10.1090/S0002-9947-1965-0195853-2, Trans. Am. Math. Soc. 116 (1965), 218-226. (1965) Zbl0141.03002MR0195853DOI10.1090/S0002-9947-1965-0195853-2
  10. Gürlebeck, K., Sprössig, W., Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice. Wiley, Chichester (1997). (1997) Zbl0897.30023
  11. Horn, R. A., Johnson, C. R., 10.1017/CBO9780511840371, Cambridge University Press, Cambridge (1991). (1991) Zbl0729.15001MR1091716DOI10.1017/CBO9780511840371
  12. Janovská, D., Opfer, G., 10.1023/B:BITN.0000014561.58141.2c, BIT 43 (2003), 991-1002. (2003) Zbl1052.65030MR2058880DOI10.1023/B:BITN.0000014561.58141.2c
  13. Janovská, D., Opfer, G., Linear equations in quaternionic variables, Mitt. Math. Ges. Hamb. 27 (2008), 223-234. (2008) Zbl1179.11042MR2528369
  14. Janovská, D., Opfer, G., 10.1137/090748871, SIAM J. Numer. Anal. 48 (2010), 244-256. (2010) Zbl1247.65060MR2608368DOI10.1137/090748871
  15. Janovská, D., Opfer, G., 10.1007/s00211-009-0274-y, Numer. Math. 115 (2010), 81-100. (2010) Zbl1190.65075MR2594342DOI10.1007/s00211-009-0274-y
  16. Janovská, D., Opfer, G., Linear equations and the Kronecker product in coquaternions, Mitt. Math. Ges. Hamb. 33 (2013), 181-196. (2013) Zbl1298.15006MR3157447
  17. Janovská, D., Opfer, G., The number of zeros of unilateral polynomials over coquaternions and related algebras, ETNA, Electron. Trans. Numer. Anal. 46 (2017), 55-70. (2017) Zbl1368.65069MR3622882
  18. Janovská, D., Opfer, G., 10.1007/s00006-018-0892-5, Adv. Appl. Clifford Algebr. 28 (2018), Article ID 76, 16 pages. (2018) Zbl1431.15016MR3832106DOI10.1007/s00006-018-0892-5
  19. Johnson, R. E., 10.1090/S0002-9904-1944-08112-3, Bull. Am. Math. Soc. 50 (1944), 202-207. (1944) Zbl0061.05505MR0009947DOI10.1090/S0002-9904-1944-08112-3
  20. Lam, T. Y., 10.1007/978-1-4684-0406-7, Graduate Texts in Mathematics 131. Springer, New York (1991). (1991) Zbl0728.16001MR1125071DOI10.1007/978-1-4684-0406-7
  21. Lauterbach, R., Opfer, G., 10.1007/s00006-014-0504-y, Adv. Appl. Clifford Algebr. 24 (2014), 1059-1073. (2014) Zbl1316.65049MR3277688DOI10.1007/s00006-014-0504-y
  22. Lee, H. C., Eigenvalues of canonical forms of matrices with quaternion coefficients, Proc. Irish Acad. A 52 (1949), 253-260. (1949) Zbl0036.29802MR0036738
  23. Niven, I., 10.1080/00029890.1941.11991158, Am. Math. Mon. 48 (1941), 654-661. (1941) Zbl0060.08002MR0006159DOI10.1080/00029890.1941.11991158
  24. Ore, Ø., 10.2307/1968245, Ann. Math. (2) 32 (1931), 463-477. (1931) Zbl0001.26601MR1503010DOI10.2307/1968245
  25. Ore, Ø., 10.2307/1968173, Ann. Math. (2) 34 (1933), 480-508. (1933) Zbl0007.15101MR1503119DOI10.2307/1968173
  26. Pogorui, A., Shapiro, M., 10.1080/0278107042000220276, Complex Variables, Theory Appl. 49 (2004), 379-389. (2004) Zbl1160.30353MR2073169DOI10.1080/0278107042000220276
  27. Poodiack, R. D., LeClair, K. J., 10.4169/074683409X475643, College Math. J. 40 (2009), 322-335. (2009) MR2572201DOI10.4169/074683409X475643
  28. Schmeikal, B., Tessarinen, Nektarinen und andere Vierheiten: Beweis einer Beobachtung von Gerhard Opfer, Mitt. Math. Ges. Hamb. 34 (2014), 81-108 German. (2014) Zbl1310.15038MR3309616
  29. Waerden, B. L. van der, 10.1007/978-3-662-01380-9, Die Grundlehren der mathematischen Wissenschaften 33. Springer, Berlin (1960), German. (1960) Zbl0087.25903MR0122834DOI10.1007/978-3-662-01380-9
  30. Wolf, L. A., 10.1090/S0002-9904-1936-06417-7, Bull. Am. Math. Soc. 42 (1936), 737-743. (1936) Zbl0015.24206MR1563415DOI10.1090/S0002-9904-1936-06417-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.