An improved delay-dependent stabilization criterion of linear time-varying delay systems: An iterative method

Venkatesh Modala; Sourav Patra; Goshaidas Ray

Kybernetika (2023)

  • Volume: 59, Issue: 4, page 633-654
  • ISSN: 0023-5954

Abstract

top
This paper presents delay-dependent stabilization criteria for linear time-varying delay systems. A less conservative stabilization criterion is derived by invoking a new Lyapunov-Krasovskii functional and then, extended reciprocally convex inequality in combination with Wirtinger's inequality is exploited to obtain an improved stabilization criterion where a set of nonlinear matrix inequalities is solved by applying the cone complementarity algorithm. The proposed stabilization technique transforms a non-convex problem into a nonlinear trace minimization problem which is solved by an iterative approach. Numerical examples are considered to demonstrate the effectiveness of the proposed stabilization criteria and the presented iterative algorithm outperforms some existing results.

How to cite

top

Modala, Venkatesh, Patra, Sourav, and Ray, Goshaidas. "An improved delay-dependent stabilization criterion of linear time-varying delay systems: An iterative method." Kybernetika 59.4 (2023): 633-654. <http://eudml.org/doc/299342>.

@article{Modala2023,
abstract = {This paper presents delay-dependent stabilization criteria for linear time-varying delay systems. A less conservative stabilization criterion is derived by invoking a new Lyapunov-Krasovskii functional and then, extended reciprocally convex inequality in combination with Wirtinger's inequality is exploited to obtain an improved stabilization criterion where a set of nonlinear matrix inequalities is solved by applying the cone complementarity algorithm. The proposed stabilization technique transforms a non-convex problem into a nonlinear trace minimization problem which is solved by an iterative approach. Numerical examples are considered to demonstrate the effectiveness of the proposed stabilization criteria and the presented iterative algorithm outperforms some existing results.},
author = {Modala, Venkatesh, Patra, Sourav, Ray, Goshaidas},
journal = {Kybernetika},
keywords = {time-delay systems; state feedback controller; Lyapunov–Krasovskii functional; Wirtinger's inequality; reciprocally convex inequality; linear matrix inequality},
language = {eng},
number = {4},
pages = {633-654},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An improved delay-dependent stabilization criterion of linear time-varying delay systems: An iterative method},
url = {http://eudml.org/doc/299342},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Modala, Venkatesh
AU - Patra, Sourav
AU - Ray, Goshaidas
TI - An improved delay-dependent stabilization criterion of linear time-varying delay systems: An iterative method
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 4
SP - 633
EP - 654
AB - This paper presents delay-dependent stabilization criteria for linear time-varying delay systems. A less conservative stabilization criterion is derived by invoking a new Lyapunov-Krasovskii functional and then, extended reciprocally convex inequality in combination with Wirtinger's inequality is exploited to obtain an improved stabilization criterion where a set of nonlinear matrix inequalities is solved by applying the cone complementarity algorithm. The proposed stabilization technique transforms a non-convex problem into a nonlinear trace minimization problem which is solved by an iterative approach. Numerical examples are considered to demonstrate the effectiveness of the proposed stabilization criteria and the presented iterative algorithm outperforms some existing results.
LA - eng
KW - time-delay systems; state feedback controller; Lyapunov–Krasovskii functional; Wirtinger's inequality; reciprocally convex inequality; linear matrix inequality
UR - http://eudml.org/doc/299342
ER -

References

top
  1. Badri, P., Sojoodi, M., , Int. J. General Systems 51 (2022), 1, 1-26. MR4394603DOI
  2. Chen, Y., Fei, S., Li, Y., , Automatica 52 (2015), 242-247. MR3310836DOI
  3. Dastaviz, A., Binazadeh, T., , In. J. Control 93 (2020), 9, 2135-2144. MR4134401DOI
  4. Dey, R., Ghosh, S., Gyurkovics, E., Ray, G., , IFAC PapersOnLine 48 (2015), 14, 120-125. DOI
  5. Dey, R., Ghosh, S., Ray, G., Rakshit, A., , Int. J. Robust Nonlinear Control 24 (2014), 5, 902-917. MR3164637DOI
  6. Dey, R., Ray, G., Balas, V. E., Stability and stabilization of linear and fuzzy time-delay systems: A linear matrix inequality approach., Springe, 2018. MR3806681
  7. Ghaoui, L. El, Oustry, F., AitRami, M., , IEEE Trans. Automat. Control 42, (1997), 8, 1171-1176. MR1469081DOI
  8. Fridman, E., Shaked, U., , IEEE Trans. Automat. Control 47 (2002), 11, 1931-1937. MR1937712DOI
  9. Fridman, E., Shaked, U., , Int. J. Control 76 (2003), 1, 48-60. MR1952833DOI
  10. Gao, H., Wang, C., , IEEE Trans. Automat. Control 48 (2003), 3, 520-525. MR1962266DOI
  11. Gahinet, P., Nemirovskii, A., Laub, A. J., Chilali, M., LMI Control Toolbox for use with MATLAB., MathWorks, Natick 1995. 
  12. Gu, K., Kharitonov, V. L., Chen, J., Stability Analysis of Time-delay Systems., Birkhauser, Boston 2003. MR3075002
  13. Gu, K., Niculescu, S. I., , J. Dyn. Sys. Meas. Control 125 (2003), 2, 158-165. DOI
  14. He, Y., Wang, Q. G., Chong, L., Min, W., , Automatica 43 (2007), 2, 371-376. MR2281843DOI
  15. Kim, J. H., , Automatica 47 (2011), 9, 2118-2121. MR2886830DOI
  16. Kim, K. H., Park, M. J., Kwon, O. M., Lee, S. M., Cha, E. J., Stability and robust H control for time-delayed systems with parameter uncertainties and stochastic disturbances., J. Engrg. Technol. 11 (2016), 1, 200-214. 
  17. Li, T., Guo, L., Zhang, Y., , Int. J. Robust Nonlinear Control: IFAC-Affiliated J. 18 (2008), 13, 1372-1387. MR2440687DOI
  18. Li, L., Jia, Y., , IET Control Theory Appl. 3 (2009), 8, 995-1005. MR2561153DOI
  19. Moon, Y. S., Park, P. G., Kwon, W. H., Lee, Y. S., , Int. J. Control 74 (2001), 14, 1447-1455. MR1857590DOI
  20. Park, P., , IEEE Trans. Automat. Control 44 (1999), 4, 876-877. MR1684455DOI
  21. Park, P. G., Ko, J. W., Jeong, C., , Automatica 47 (2011), 1, 235-238. MR2878269DOI
  22. Ramakrishnan, K., Ray, G., , J. Dynamic Systems Measurement Control 134 (2012), 011008, 1-5. DOI
  23. Parlakci, M. A., , Int. J. Robust Nonlinear Control: IFAC-Affiliated J. 16 (2006), 13, 599-636. MR2250425DOI
  24. Prasad, K. C. Rajendra, Arun, N. K., Venkatesh, M., An improved stabilization criteria for linear systems with time-varying delay using a new Lyapunov-Krasovskii functional., In: Control and Measurement Applications for Smart Grid; Springer, Singapore 2022, pp. 335-346. 
  25. Richard, J. P., , Automatica 39 (2003), 10, 1667-1694. Zbl1145.93302MR2141765DOI
  26. Seuret, A., Gouaisbaut, F., , Automatica 49 (2013), 9, 2860-2866. MR3084475DOI
  27. Seuret, A., Gouaisbaut, F., , IEEE Trans. Automat. Control. 63 (2018), 1, 225-232. MR3744841DOI
  28. Sun, J., Liu, G. P., Chen, J., , Int. Robust Nonlinear Control 19 (2009), 1364-1375. MR2537819DOI
  29. Venkatesh, M., Patra, S., Ramakrishnan, K., Ray, G., , Int. J. Systems Sci. 49 (2018), 12, 2586-2600. MR3859628DOI
  30. Venkatesh, M., Patra, S., Ray, G., , In: IEEE Tencon 10 Conference 2018, pp. 205-210. DOI
  31. Venkatesh, M., Patra, S., Ray, G., , J. Dynamic Systems Measurement Control 143 (2021), 12, 124501. DOI
  32. Venkatesh, M., Patra, S., Ray, G., , Int. J. Automat. Control 16 (2022), 5, 547-572. DOI
  33. Wang, C., Zhou, X., Shi, X., Jin, Y., , Optimal Control Appl. Methods 43 (2022), 3, 979-993. MR4417809DOI
  34. Wu, M., He, Y., She, J. H., , IEEE Trans. Automat. Control 49 (2014), 12, 2266-2271. MR2106758DOI
  35. Zhang, C. K., He, Y., Jiang, L., Wu, M., Wang, Q. G., , Automatica 85 (2017), 481-485. MR3712893DOI
  36. Zhang, X. M., Han, Q. L., , IET Control Theory Appl. 8 (2014), 12, 1054-1061. MR3236847DOI
  37. Zhang, X. M., Wu, M., She, J. H., He, Y., , Automatica 41 (2005), 1405-1412. MR2160485DOI
  38. Zhang, J., Xia, Y., Shi, P., Mahmoud, M. S., , IET Control Theory Appl. 5 (2011), 3, 429-436. MR2857652DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.