On the class of positive disjoint weak -convergent operators
Mathematica Bohemica (2024)
- Volume: 149, Issue: 3, page 409-418
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topRetbi, Abderrahman. "On the class of positive disjoint weak $p$-convergent operators." Mathematica Bohemica 149.3 (2024): 409-418. <http://eudml.org/doc/299343>.
@article{Retbi2024,
abstract = {We introduce and study the disjoint weak $p$-convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak $p$-convergent operators. Next, we examine the relationship between disjoint weak $p$-convergent operators and disjoint $p$-convergent operators. Finally, we characterize order bounded disjoint weak $p$-convergent operators in terms of sequences in Banach lattices.},
author = {Retbi, Abderrahman},
journal = {Mathematica Bohemica},
keywords = {$p$-convergent operator; disjoint $p$-convergent operator; positive Schur property of order $p$; order continuous norm; Banach lattice},
language = {eng},
number = {3},
pages = {409-418},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the class of positive disjoint weak $p$-convergent operators},
url = {http://eudml.org/doc/299343},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Retbi, Abderrahman
TI - On the class of positive disjoint weak $p$-convergent operators
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 409
EP - 418
AB - We introduce and study the disjoint weak $p$-convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak $p$-convergent operators. Next, we examine the relationship between disjoint weak $p$-convergent operators and disjoint $p$-convergent operators. Finally, we characterize order bounded disjoint weak $p$-convergent operators in terms of sequences in Banach lattices.
LA - eng
KW - $p$-convergent operator; disjoint $p$-convergent operator; positive Schur property of order $p$; order continuous norm; Banach lattice
UR - http://eudml.org/doc/299343
ER -
References
top- Alikhani, M., Fakhar, M., Zafarani, J., 10.1007/s10476-020-0011-4, Anal. Math. 46 (2020), 1-12. (2020) Zbl1449.46021MR4064575DOI10.1007/s10476-020-0011-4
- Aliprantis, C. D., Burkinshaw, O., 10.1007/978-1-4020-5008-4, Springer, Dordrecht (2006). (2006) Zbl1098.47001MR2262133DOI10.1007/978-1-4020-5008-4
- Castillo, J. M. F., Sánchez, F., Dunford-Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complutense Madr. 6 (1993), 43-59. (1993) Zbl0807.46033MR1245024
- Chen, D., Chávez-Domínguez, J. A., Li, L., 10.1016/j.jmaa.2018.01.051, J. Math. Anal. Appl. 461 (2018), 1053-1066. (2018) Zbl1464.46008MR3765477DOI10.1016/j.jmaa.2018.01.051
- Dehghani, M. B., Moshtaghioun, S. M., 10.1215/20088752-2017-0033, Ann. Funct. Anal. 9 (2018), 123-136. (2018) Zbl1486.46008MR3758748DOI10.1215/20088752-2017-0033
- Diestel, J., 10.1007/978-1-4612-5200-9, Graduate Texts in Mathematics 92. Springer, New York (1984). (1984) Zbl0542.46007MR0737004DOI10.1007/978-1-4612-5200-9
- Diestel, J., Jarchow, H., Tonge, A., 10.1017/CBO9780511526138, Cambridge Studies in Advanced Mathematics 43. Cambridge University Press, Cambridge (1995). (1995) Zbl0855.47016MR1342297DOI10.1017/CBO9780511526138
- Dodds, P. G., Fremlin, D. H., 10.1007/BF02760610, Isr. J. Math. 34 (1979), 287-320. (1979) Zbl0438.47042MR0570888DOI10.1007/BF02760610
- Dunford, N., Schwartz, J. T., Linear Operators. I. General Theory, Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). (1958) Zbl0084.10402MR0117523
- Ghenciu, I., 10.1007/s10474-018-0836-5, Acta Math. Hung. 155 (2018), 439-457. (2018) Zbl1413.46015MR3831309DOI10.1007/s10474-018-0836-5
- Wnuk, W., Banach lattices with the weak Dunford-Pettis property, Atti Semin. Mat. Fis. Univ. Modena 42 (1994), 227-236. (1994) Zbl0805.46023MR1282338
- Zeekoei, E. D., Fourie, J. H., 10.1007/s10114-017-7172-5, Acta Math. Sin., Engl. Ser. 34 (2018), 873-890. (2018) Zbl06881942MR3785686DOI10.1007/s10114-017-7172-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.