On extending C k functions from an open set to with applications

Walter D. Burgess; Robert M. Raphael

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 487-498
  • ISSN: 0011-4642

Abstract

top
For k { } and U open in , let C k ( U ) be the ring of real valued functions on U with the first k derivatives continuous. It is shown that for f C k ( U ) there is g C ( ) with U coz g and h C k ( ) with f g | U = h | U . The function f and its k derivatives are not assumed to be bounded on U . The function g is constructed using splines based on the Mollifier function. Some consequences about the ring C k ( ) are deduced from this, in particular that Q cl ( C k ( ) ) = Q ( C k ( ) ) .

How to cite

top

Burgess, Walter D., and Raphael, Robert M.. "On extending ${\rm C}^{k}$ functions from an open set to $\mathbb {R}$ with applications." Czechoslovak Mathematical Journal 73.2 (2023): 487-498. <http://eudml.org/doc/299347>.

@article{Burgess2023,
abstract = {For $k\in \{\mathbb \{N\}\} \cup \lbrace \infty \rbrace $ and $U$ open in $ \{\mathbb \{R\}\}$, let $\{\rm C\}^\{k\}(U)$ be the ring of real valued functions on $U$ with the first $k$ derivatives continuous. It is shown that for $f\in \{\rm C\}^\{k\}(U)$ there is $g\in \{\rm C\}^\{\infty \} (\{\mathbb \{R\}\})$ with $U\subseteq \{\rm coz\} g$ and $h\in \{\rm C\}^\{k\} (\{\mathbb \{R\}\})$ with $fg|_U=h|_U$. The function $f$ and its $k$ derivatives are not assumed to be bounded on $U$. The function $g$ is constructed using splines based on the Mollifier function. Some consequences about the ring $\{\rm C\}^\{k\} (\{\mathbb \{R\}\})$ are deduced from this, in particular that $\{\rm Q\}_\{\rm cl\} (\{\rm C\}^\{k\} (\{\mathbb \{R\}\})) = \{\rm Q\}(\{\rm C\}^\{k\} (\{\mathbb \{R\}\}))$.},
author = {Burgess, Walter D., Raphael, Robert M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\{\rm C\}^k$ function; spline; ring of quotient; Mollifier function},
language = {eng},
number = {2},
pages = {487-498},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On extending $\{\rm C\}^\{k\}$ functions from an open set to $\mathbb \{R\}$ with applications},
url = {http://eudml.org/doc/299347},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Burgess, Walter D.
AU - Raphael, Robert M.
TI - On extending ${\rm C}^{k}$ functions from an open set to $\mathbb {R}$ with applications
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 487
EP - 498
AB - For $k\in {\mathbb {N}} \cup \lbrace \infty \rbrace $ and $U$ open in $ {\mathbb {R}}$, let ${\rm C}^{k}(U)$ be the ring of real valued functions on $U$ with the first $k$ derivatives continuous. It is shown that for $f\in {\rm C}^{k}(U)$ there is $g\in {\rm C}^{\infty } ({\mathbb {R}})$ with $U\subseteq {\rm coz} g$ and $h\in {\rm C}^{k} ({\mathbb {R}})$ with $fg|_U=h|_U$. The function $f$ and its $k$ derivatives are not assumed to be bounded on $U$. The function $g$ is constructed using splines based on the Mollifier function. Some consequences about the ring ${\rm C}^{k} ({\mathbb {R}})$ are deduced from this, in particular that ${\rm Q}_{\rm cl} ({\rm C}^{k} ({\mathbb {R}})) = {\rm Q}({\rm C}^{k} ({\mathbb {R}}))$.
LA - eng
KW - ${\rm C}^k$ function; spline; ring of quotient; Mollifier function
UR - http://eudml.org/doc/299347
ER -

References

top
  1. Anderson, D. F., Badawi, A., 10.1081/AGB-120005834, Commun. Algebra 30 (2002), 4031-4047. (2002) Zbl1063.13003MR1922326DOI10.1081/AGB-120005834
  2. Azarpanah, F., Ghashghaei, E., Ghoulipour, M., 10.1080/00927872.2020.1797070, Commun. Algebra 49 (2021), 185-206. (2021) Zbl1453.13008MR4193623DOI10.1080/00927872.2020.1797070
  3. Barr, M., Burgess, W. D., Raphael, R., Ring epimorphisms and C ( X ) , Theory Appl. Categ. 11 (2003), 283-308. (2003) Zbl1042.54007MR1988400
  4. Barr, M., Kennison, J. F., Raphael, R., Limit closures of classes of commutative rings, Theory Appl. Categ. 30 (2015), 229-304. (2015) Zbl1327.13084MR3322157
  5. Blair, R. L., Hager, A. W., 10.1007/BF01189255, Math. Z. 136 (1974), 41-52. (1974) Zbl0264.54011MR0385793DOI10.1007/BF01189255
  6. Fine, N. J., Gillman, L., Lambek, J., Rings of Quotients of Rings of Functions, McGill University Press, Montreal (1966). (1966) Zbl0143.35704MR0200747
  7. Gillman, L., Jerison, M., 10.1007/978-1-4615-7819-2, Graduate Texts in Mathematics 43. Springer, New York (1976). (1976) Zbl0327.46040MR0407579DOI10.1007/978-1-4615-7819-2
  8. Henriksen, M., 10.1007/978-94-009-2472-7_12, Ordered Algebraic Structures Mathematics and its Applications 55. Kluwer Academic, Dordrecht (1989), 143-174. (1989) Zbl0739.46011MR1094833DOI10.1007/978-94-009-2472-7_12
  9. Hörmander, L., 10.1007/978-3-642-96750-4, Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1983). (1983) Zbl0521.35001MR0717035DOI10.1007/978-3-642-96750-4
  10. Knox, M. L., Levy, R., McGovern, W. W., Shapiro, J., 10.1142/S0219498809003138, J. Algebra Appl. 8 (2009), 17-40. (2009) Zbl1173.13002MR2191531DOI10.1142/S0219498809003138
  11. Lambek, J., Lectures on Rings and Modules, Chelsea Publishing, New York (1976). (1976) Zbl0365.16001MR0419493
  12. Stenström, B., 10.1007/978-3-642-66066-5, Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). (1975) Zbl0296.16001MR0389953DOI10.1007/978-3-642-66066-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.