On extending functions from an open set to with applications
Walter D. Burgess; Robert M. Raphael
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 487-498
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBurgess, Walter D., and Raphael, Robert M.. "On extending ${\rm C}^{k}$ functions from an open set to $\mathbb {R}$ with applications." Czechoslovak Mathematical Journal 73.2 (2023): 487-498. <http://eudml.org/doc/299347>.
@article{Burgess2023,
abstract = {For $k\in \{\mathbb \{N\}\} \cup \lbrace \infty \rbrace $ and $U$ open in $ \{\mathbb \{R\}\}$, let $\{\rm C\}^\{k\}(U)$ be the ring of real valued functions on $U$ with the first $k$ derivatives continuous. It is shown that for $f\in \{\rm C\}^\{k\}(U)$ there is $g\in \{\rm C\}^\{\infty \} (\{\mathbb \{R\}\})$ with $U\subseteq \{\rm coz\} g$ and $h\in \{\rm C\}^\{k\} (\{\mathbb \{R\}\})$ with $fg|_U=h|_U$. The function $f$ and its $k$ derivatives are not assumed to be bounded on $U$. The function $g$ is constructed using splines based on the Mollifier function. Some consequences about the ring $\{\rm C\}^\{k\} (\{\mathbb \{R\}\})$ are deduced from this, in particular that $\{\rm Q\}_\{\rm cl\} (\{\rm C\}^\{k\} (\{\mathbb \{R\}\})) = \{\rm Q\}(\{\rm C\}^\{k\} (\{\mathbb \{R\}\}))$.},
author = {Burgess, Walter D., Raphael, Robert M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\{\rm C\}^k$ function; spline; ring of quotient; Mollifier function},
language = {eng},
number = {2},
pages = {487-498},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On extending $\{\rm C\}^\{k\}$ functions from an open set to $\mathbb \{R\}$ with applications},
url = {http://eudml.org/doc/299347},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Burgess, Walter D.
AU - Raphael, Robert M.
TI - On extending ${\rm C}^{k}$ functions from an open set to $\mathbb {R}$ with applications
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 487
EP - 498
AB - For $k\in {\mathbb {N}} \cup \lbrace \infty \rbrace $ and $U$ open in $ {\mathbb {R}}$, let ${\rm C}^{k}(U)$ be the ring of real valued functions on $U$ with the first $k$ derivatives continuous. It is shown that for $f\in {\rm C}^{k}(U)$ there is $g\in {\rm C}^{\infty } ({\mathbb {R}})$ with $U\subseteq {\rm coz} g$ and $h\in {\rm C}^{k} ({\mathbb {R}})$ with $fg|_U=h|_U$. The function $f$ and its $k$ derivatives are not assumed to be bounded on $U$. The function $g$ is constructed using splines based on the Mollifier function. Some consequences about the ring ${\rm C}^{k} ({\mathbb {R}})$ are deduced from this, in particular that ${\rm Q}_{\rm cl} ({\rm C}^{k} ({\mathbb {R}})) = {\rm Q}({\rm C}^{k} ({\mathbb {R}}))$.
LA - eng
KW - ${\rm C}^k$ function; spline; ring of quotient; Mollifier function
UR - http://eudml.org/doc/299347
ER -
References
top- Anderson, D. F., Badawi, A., 10.1081/AGB-120005834, Commun. Algebra 30 (2002), 4031-4047. (2002) Zbl1063.13003MR1922326DOI10.1081/AGB-120005834
- Azarpanah, F., Ghashghaei, E., Ghoulipour, M., 10.1080/00927872.2020.1797070, Commun. Algebra 49 (2021), 185-206. (2021) Zbl1453.13008MR4193623DOI10.1080/00927872.2020.1797070
- Barr, M., Burgess, W. D., Raphael, R., Ring epimorphisms and , Theory Appl. Categ. 11 (2003), 283-308. (2003) Zbl1042.54007MR1988400
- Barr, M., Kennison, J. F., Raphael, R., Limit closures of classes of commutative rings, Theory Appl. Categ. 30 (2015), 229-304. (2015) Zbl1327.13084MR3322157
- Blair, R. L., Hager, A. W., 10.1007/BF01189255, Math. Z. 136 (1974), 41-52. (1974) Zbl0264.54011MR0385793DOI10.1007/BF01189255
- Fine, N. J., Gillman, L., Lambek, J., Rings of Quotients of Rings of Functions, McGill University Press, Montreal (1966). (1966) Zbl0143.35704MR0200747
- Gillman, L., Jerison, M., 10.1007/978-1-4615-7819-2, Graduate Texts in Mathematics 43. Springer, New York (1976). (1976) Zbl0327.46040MR0407579DOI10.1007/978-1-4615-7819-2
- Henriksen, M., 10.1007/978-94-009-2472-7_12, Ordered Algebraic Structures Mathematics and its Applications 55. Kluwer Academic, Dordrecht (1989), 143-174. (1989) Zbl0739.46011MR1094833DOI10.1007/978-94-009-2472-7_12
- Hörmander, L., 10.1007/978-3-642-96750-4, Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1983). (1983) Zbl0521.35001MR0717035DOI10.1007/978-3-642-96750-4
- Knox, M. L., Levy, R., McGovern, W. W., Shapiro, J., 10.1142/S0219498809003138, J. Algebra Appl. 8 (2009), 17-40. (2009) Zbl1173.13002MR2191531DOI10.1142/S0219498809003138
- Lambek, J., Lectures on Rings and Modules, Chelsea Publishing, New York (1976). (1976) Zbl0365.16001MR0419493
- Stenström, B., 10.1007/978-3-642-66066-5, Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). (1975) Zbl0296.16001MR0389953DOI10.1007/978-3-642-66066-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.