A primrose path from Krull to Zorn
Given a set of “indeterminates” and a field , an ideal in the polynomial ring is called conservative if it contains with any polynomial all of its monomials. The map yields an isomorphism between the power set and the complete lattice of all conservative prime ideals of . Moreover, the members of any system of finite character are in one-to-one correspondence with the conservative prime ideals contained in , and the maximal members of correspond to the maximal ideals contained in...