An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function

Mitja Nedic

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 117-134
  • ISSN: 0011-4642

Abstract

top
We derive an analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Here, the main tools used are the so-called variable non-dependence property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type and quasi-Cauchy-type functions.

How to cite

top

Nedic, Mitja. "An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function." Czechoslovak Mathematical Journal 73.1 (2023): 117-134. <http://eudml.org/doc/299350>.

@article{Nedic2023,
abstract = {We derive an analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Here, the main tools used are the so-called variable non-dependence property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type and quasi-Cauchy-type functions.},
author = {Nedic, Mitja},
journal = {Czechoslovak Mathematical Journal},
keywords = {Herglotz-Nevanlinna function; Cauchy-type function; symmetric extension; Stieltjes inversion formula},
language = {eng},
number = {1},
pages = {117-134},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function},
url = {http://eudml.org/doc/299350},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Nedic, Mitja
TI - An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 117
EP - 134
AB - We derive an analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Here, the main tools used are the so-called variable non-dependence property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type and quasi-Cauchy-type functions.
LA - eng
KW - Herglotz-Nevanlinna function; Cauchy-type function; symmetric extension; Stieltjes inversion formula
UR - http://eudml.org/doc/299350
ER -

References

top
  1. Agler, J., McCarthy, J. E., Young, N. J., 10.4007/annals.2012.176.3.7, Ann. Math. (2) 176 (2012), 1783-1826. (2012) Zbl1268.47025MR2979860DOI10.4007/annals.2012.176.3.7
  2. Akhiezer, N. I., The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing, New York (1965). (1965) Zbl0135.33803MR0184042
  3. Aronszajn, N., 10.2307/2372564, Am. J. Math. 79 (1957), 597-610. (1957) Zbl0079.10802MR0088623DOI10.2307/2372564
  4. Aronszajn, N., Brown, R. D., 10.4064/sm-36-1-1-76, Stud. Math. 36 (1970), 1-76. (1970) Zbl0203.45202MR0271766DOI10.4064/sm-36-1-1-76
  5. Bernland, A., Luger, A., Gustafsson, M., 10.1088/1751-8113/44/14/145205, J. Phys. A, Math. Theor. 44 (2011), Article ID 145205, 20 pages. (2011) Zbl1222.30031MR2780420DOI10.1088/1751-8113/44/14/145205
  6. Cauer, W., 10.1090/S0002-9904-1932-05510-0, Bull. Am. Math. Soc. 38 (1932), 713-717. (1932) Zbl0005.36102MR1562494DOI10.1090/S0002-9904-1932-05510-0
  7. W. F. Donoghue, Jr., 10.1002/cpa.3160180402, Commun. Pure Appl. Math. 18 (1965), 559-579. (1965) Zbl0143.16403MR0190761DOI10.1002/cpa.3160180402
  8. Ivanenko, Y., Gustafsson, M., Jonsson, B. L. G., Luger, A., Nilsson, B., Nordebo, S., Toft, J., 10.1137/17M1161026, SIAM J. Appl. Math. 79 (2019), 436-458. (2019) Zbl1416.41008MR3917936DOI10.1137/17M1161026
  9. Ivanenko, Y., Nedic, M., Gustafsson, M., Jonsson, B. L. G., Luger, A., Nordebo, S., 10.1098/rsos.191541, Royal Soc. Open Sci. 7 (2020), Article ID 191541, 15 pages. (2020) DOI10.1098/rsos.191541
  10. Kac, I. S., Kreĭn, M. G., 10.1090/trans2/103, Nine Papers in Analysis American Mathematical Society Translations: Series 2, Volume 103. AMS, Providence (1974), 1-18. (1974) Zbl0291.34016DOI10.1090/trans2/103
  11. Koosis, P., 10.1017/CBO9780511470950, Cambridge Tracts in Mathematics 115. Cambridge University Press, Cambridge (1998). (1998) Zbl1024.30001MR1669574DOI10.1017/CBO9780511470950
  12. Luger, A., Nedic, M., 10.4310/ARKIV.2017.v55.n1.a10, Ark. Mat. 55 (2017), 199-216. (2017) Zbl1386.32004MR3711149DOI10.4310/ARKIV.2017.v55.n1.a10
  13. Luger, A., Nedic, M., 10.1016/j.jmaa.2018.11.072, J. Math. Anal. Appl. 472 (2019), 1189-1219. (2019) Zbl1418.32002MR3906418DOI10.1016/j.jmaa.2018.11.072
  14. Luger, A., Nedic, M., On quasi-Herglotz functions in one variable, Available at https://arxiv.org/abs/1909.10198v2 (2019), 35 pages. (2019) MR4491827
  15. Luger, A., Nedic, M., 10.1007/s12220-020-00368-4, J. Geom. Anal. 31 (2021), 2611-2638. (2021) Zbl1460.28002MR4225820DOI10.1007/s12220-020-00368-4
  16. Nedic, M., 10.1142/S0129167X20501025, Int. J. Math. 31 (2020), Article ID 2050102, 27 pages. (2020) Zbl1457.32005MR4184434DOI10.1142/S0129167X20501025
  17. Nevanlinna, R., Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentenproblem, Ann. Acad. Sci. Fenn., Ser. A 18 (1922), 1-53 German 9999JFM99999 48.1226.02. (1922) 
  18. Simon, B., 10.1006/aima.1998.1728, Adv. Math. 137 (1998), 82-203. (1998) Zbl0910.44004MR1627806DOI10.1006/aima.1998.1728
  19. Vladimirov, V. S., Holomorphic functions with non-negative imaginary part in a tubular region over a cone, Mat. Sb., Nov. Ser. 79 (1969), 128-152 Russian. (1969) Zbl0183.08702MR0250066
  20. Vladimirov, V. S., Generalized Functions in Mathematical Physics, Mir, Moscow (1979). (1979) Zbl0515.46034MR0564116

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.