An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 117-134
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNedic, Mitja. "An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function." Czechoslovak Mathematical Journal 73.1 (2023): 117-134. <http://eudml.org/doc/299350>.
@article{Nedic2023,
abstract = {We derive an analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Here, the main tools used are the so-called variable non-dependence property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type and quasi-Cauchy-type functions.},
author = {Nedic, Mitja},
journal = {Czechoslovak Mathematical Journal},
keywords = {Herglotz-Nevanlinna function; Cauchy-type function; symmetric extension; Stieltjes inversion formula},
language = {eng},
number = {1},
pages = {117-134},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function},
url = {http://eudml.org/doc/299350},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Nedic, Mitja
TI - An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 117
EP - 134
AB - We derive an analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Here, the main tools used are the so-called variable non-dependence property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type and quasi-Cauchy-type functions.
LA - eng
KW - Herglotz-Nevanlinna function; Cauchy-type function; symmetric extension; Stieltjes inversion formula
UR - http://eudml.org/doc/299350
ER -
References
top- Agler, J., McCarthy, J. E., Young, N. J., 10.4007/annals.2012.176.3.7, Ann. Math. (2) 176 (2012), 1783-1826. (2012) Zbl1268.47025MR2979860DOI10.4007/annals.2012.176.3.7
- Akhiezer, N. I., The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing, New York (1965). (1965) Zbl0135.33803MR0184042
- Aronszajn, N., 10.2307/2372564, Am. J. Math. 79 (1957), 597-610. (1957) Zbl0079.10802MR0088623DOI10.2307/2372564
- Aronszajn, N., Brown, R. D., 10.4064/sm-36-1-1-76, Stud. Math. 36 (1970), 1-76. (1970) Zbl0203.45202MR0271766DOI10.4064/sm-36-1-1-76
- Bernland, A., Luger, A., Gustafsson, M., 10.1088/1751-8113/44/14/145205, J. Phys. A, Math. Theor. 44 (2011), Article ID 145205, 20 pages. (2011) Zbl1222.30031MR2780420DOI10.1088/1751-8113/44/14/145205
- Cauer, W., 10.1090/S0002-9904-1932-05510-0, Bull. Am. Math. Soc. 38 (1932), 713-717. (1932) Zbl0005.36102MR1562494DOI10.1090/S0002-9904-1932-05510-0
- W. F. Donoghue, Jr., 10.1002/cpa.3160180402, Commun. Pure Appl. Math. 18 (1965), 559-579. (1965) Zbl0143.16403MR0190761DOI10.1002/cpa.3160180402
- Ivanenko, Y., Gustafsson, M., Jonsson, B. L. G., Luger, A., Nilsson, B., Nordebo, S., Toft, J., 10.1137/17M1161026, SIAM J. Appl. Math. 79 (2019), 436-458. (2019) Zbl1416.41008MR3917936DOI10.1137/17M1161026
- Ivanenko, Y., Nedic, M., Gustafsson, M., Jonsson, B. L. G., Luger, A., Nordebo, S., 10.1098/rsos.191541, Royal Soc. Open Sci. 7 (2020), Article ID 191541, 15 pages. (2020) DOI10.1098/rsos.191541
- Kac, I. S., Kreĭn, M. G., 10.1090/trans2/103, Nine Papers in Analysis American Mathematical Society Translations: Series 2, Volume 103. AMS, Providence (1974), 1-18. (1974) Zbl0291.34016DOI10.1090/trans2/103
- Koosis, P., 10.1017/CBO9780511470950, Cambridge Tracts in Mathematics 115. Cambridge University Press, Cambridge (1998). (1998) Zbl1024.30001MR1669574DOI10.1017/CBO9780511470950
- Luger, A., Nedic, M., 10.4310/ARKIV.2017.v55.n1.a10, Ark. Mat. 55 (2017), 199-216. (2017) Zbl1386.32004MR3711149DOI10.4310/ARKIV.2017.v55.n1.a10
- Luger, A., Nedic, M., 10.1016/j.jmaa.2018.11.072, J. Math. Anal. Appl. 472 (2019), 1189-1219. (2019) Zbl1418.32002MR3906418DOI10.1016/j.jmaa.2018.11.072
- Luger, A., Nedic, M., On quasi-Herglotz functions in one variable, Available at https://arxiv.org/abs/1909.10198v2 (2019), 35 pages. (2019) MR4491827
- Luger, A., Nedic, M., 10.1007/s12220-020-00368-4, J. Geom. Anal. 31 (2021), 2611-2638. (2021) Zbl1460.28002MR4225820DOI10.1007/s12220-020-00368-4
- Nedic, M., 10.1142/S0129167X20501025, Int. J. Math. 31 (2020), Article ID 2050102, 27 pages. (2020) Zbl1457.32005MR4184434DOI10.1142/S0129167X20501025
- Nevanlinna, R., Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentenproblem, Ann. Acad. Sci. Fenn., Ser. A 18 (1922), 1-53 German 9999JFM99999 48.1226.02. (1922)
- Simon, B., 10.1006/aima.1998.1728, Adv. Math. 137 (1998), 82-203. (1998) Zbl0910.44004MR1627806DOI10.1006/aima.1998.1728
- Vladimirov, V. S., Holomorphic functions with non-negative imaginary part in a tubular region over a cone, Mat. Sb., Nov. Ser. 79 (1969), 128-152 Russian. (1969) Zbl0183.08702MR0250066
- Vladimirov, V. S., Generalized Functions in Mathematical Physics, Mir, Moscow (1979). (1979) Zbl0515.46034MR0564116
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.