The Non Linear Cauchy Problem Of Operator Differential Equations
Marija Skendžić (1970)
Publications de l'Institut Mathématique
Similarity:
Marija Skendžić (1970)
Publications de l'Institut Mathématique
Similarity:
J. Ligęza (1975)
Colloquium Mathematicae
Similarity:
Mozgawa, Witold (2009)
Beiträge zur Algebra und Geometrie
Similarity:
H. Marcinkowska (1971)
Annales Polonici Mathematici
Similarity:
Jan Persson (1976)
Publications mathématiques et informatique de Rennes
Similarity:
Raetz, Juerg (1983)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
G. Métivier (1993)
Inventiones mathematicae
Similarity:
Michael Christ (1990)
Colloquium Mathematicae
Similarity:
Kent, Darrell C. (1984)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Belbachir, Hacene (2004)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
Rath, Nandita (2000)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Lowen-Colebunders, Eva (1982)
International Journal of Mathematics and Mathematical Sciences
Similarity:
M. Stojanović (1974)
Matematički Vesnik
Similarity:
Henryk Kołakowski, Jarosław Łazuka (2008)
Applicationes Mathematicae
Similarity:
The aim of this paper is to derive a formula for the solution to the Cauchy problem for the linear system of partial differential equations describing nonsimple thermoelasticity. Some properties of the solution are also presented. It is a first step to study the nonlinear case.
Antoni Augustynowicz (1999)
Annales Polonici Mathematici
Similarity:
We prove an existence theorem of Cauchy-Kovalevskaya type for the equation where f is a polynomial with respect to the last k variables.