Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case

Carlota Maria Cuesta; Xuban Diez-Izagirre

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1057-1080
  • ISSN: 0011-4642

Abstract

top
We study the large time behaviour of the solutions of a nonlocal regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order 1 + α , with α ( 0 , 1 ) , which is a Riesz-Feller operator. The nonlinear flux is given by the locally Lipschitz function | u | q - 1 u / q for q > 1 . We show that in the sub-critical case, 1 < q < 1 + α , the large time behaviour is governed by the unique entropy solution of the scalar conservation law. Our proof adapts the proofs of the analogous results for the local case (where the regularisation is the Laplacian) and, more closely, the ones for the regularisation given by the fractional Laplacian with order larger than one, see L. I. Ignat and D. Stan (2018). The main difference is that our operator is not symmetric and its Fourier symbol is not real. We can also adapt the proof and obtain similar results for general Riesz-Feller operators.

How to cite

top

Cuesta, Carlota Maria, and Diez-Izagirre, Xuban. "Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case." Czechoslovak Mathematical Journal 73.4 (2023): 1057-1080. <http://eudml.org/doc/299355>.

@article{Cuesta2023,
abstract = {We study the large time behaviour of the solutions of a nonlocal regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order $1+\alpha $, with $\alpha \in (0,1)$, which is a Riesz-Feller operator. The nonlinear flux is given by the locally Lipschitz function $|u|^\{q-1\}u/q$ for $q>1$. We show that in the sub-critical case, $1<q < 1 +\alpha $, the large time behaviour is governed by the unique entropy solution of the scalar conservation law. Our proof adapts the proofs of the analogous results for the local case (where the regularisation is the Laplacian) and, more closely, the ones for the regularisation given by the fractional Laplacian with order larger than one, see L. I. Ignat and D. Stan (2018). The main difference is that our operator is not symmetric and its Fourier symbol is not real. We can also adapt the proof and obtain similar results for general Riesz-Feller operators.},
author = {Cuesta, Carlota Maria, Diez-Izagirre, Xuban},
journal = {Czechoslovak Mathematical Journal},
keywords = {large time asymptotic; regularisation of conservation law; Riesz-Feller operator},
language = {eng},
number = {4},
pages = {1057-1080},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case},
url = {http://eudml.org/doc/299355},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Cuesta, Carlota Maria
AU - Diez-Izagirre, Xuban
TI - Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1057
EP - 1080
AB - We study the large time behaviour of the solutions of a nonlocal regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order $1+\alpha $, with $\alpha \in (0,1)$, which is a Riesz-Feller operator. The nonlinear flux is given by the locally Lipschitz function $|u|^{q-1}u/q$ for $q>1$. We show that in the sub-critical case, $1<q < 1 +\alpha $, the large time behaviour is governed by the unique entropy solution of the scalar conservation law. Our proof adapts the proofs of the analogous results for the local case (where the regularisation is the Laplacian) and, more closely, the ones for the regularisation given by the fractional Laplacian with order larger than one, see L. I. Ignat and D. Stan (2018). The main difference is that our operator is not symmetric and its Fourier symbol is not real. We can also adapt the proof and obtain similar results for general Riesz-Feller operators.
LA - eng
KW - large time asymptotic; regularisation of conservation law; Riesz-Feller operator
UR - http://eudml.org/doc/299355
ER -

References

top
  1. Achleitner, F., Hittmeir, S., Schmeiser, C., 10.1016/j.jde.2010.11.015, J. Differ. Equations 250 (2011), 2177-2196. (2011) Zbl1213.47066MR2763569DOI10.1016/j.jde.2010.11.015
  2. Achleitner, F., Kuehn, C., 10.57262/ade/1435064517, Adv. Differ. Equ. 20 (2015), 887-936. (2015) Zbl1327.35053MR3360395DOI10.57262/ade/1435064517
  3. Achleitner, F., Ueda, Y., 10.1007/s00028-018-0426-6, J. Evol. Equ. 18 (2018), 923-946. (2018) Zbl06932128MR3820428DOI10.1007/s00028-018-0426-6
  4. Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65. Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
  5. Bertoin, J., Lévy Processes, Cambridge Tracts in Mathematics 121. Cambridge University Press, Cambridge (1996). (1996) Zbl0861.60003MR1406564
  6. Biler, P., Karch, G., Woyczyński, W. A., 10.4064/sm148-2-5, Stud. Math. 148 (2001), 171-192. (2001) Zbl0990.35023MR1881259DOI10.4064/sm148-2-5
  7. Biler, P., Karch, G., Woyczyński, W. A., 10.1016/S0294-1449(01)00080-4, Ann. Inst. H. Poincaré, Anal. Non Linéaire 18 (2001), 613-637. (2001) Zbl0991.35009MR1849690DOI10.1016/S0294-1449(01)00080-4
  8. Bouharguane, A., Carles, R., 10.1090/S0025-5718-2013-02757-3, Math. Comput. 83 (2014), 1121-1141. (2014) Zbl1286.65109MR3167452DOI10.1090/S0025-5718-2013-02757-3
  9. Cazacu, C. M., Ignat, L. I., Pazoto, A. F., 10.1088/1361-6544/aa773a, Nonlinearity 30 (2017), 3126-3150. (2017) Zbl1372.35040MR3685664DOI10.1088/1361-6544/aa773a
  10. Christ, F. M., Weinstein, M. I., 10.1016/0022-1236(91)90103-C, J. Funct. Anal. 100 (1991), 87-109. (1991) Zbl0743.35067MR1124294DOI10.1016/0022-1236(91)90103-C
  11. Cifani, S., Jakobsen, E. R., 10.1016/j.anihpc.2011.02.006, Ann. Inst. H. Poincaré, Anal. Non Linéaire 28 (2011), 413-441. (2011) Zbl1217.35204MR2795714DOI10.1016/j.anihpc.2011.02.006
  12. Cuesta, C. M., Achleitner, F., 10.1016/j.jde.2016.09.029, J. Differ. Equations 262 (2017), 1155-1160. (2017) Zbl06652621MR3569418DOI10.1016/j.jde.2016.09.029
  13. J. Diestel, J. J. Uhl, Jr., 10.1090/surv/015, Mathematical Surveys 15. AMS, Providence (1977). (1977) Zbl0369.46039MR0453964DOI10.1090/surv/015
  14. Diez-Izagirre, X., Non-Local Regularisations of Scalar Conservation Laws: Doctoral Thesis, University of the Basque Country, Azpeitia (2021), Spanish. (2021) 
  15. Diez-Izagirre, X., Cuesta, C. M., 10.1007/s00605-020-01413-8, Monatsh. Math. 192 (2020), 513-550. (2020) Zbl1441.35165MR4109515DOI10.1007/s00605-020-01413-8
  16. Droniou, J., Imbert, C., 10.1007/s00205-006-0429-2, Arch. Ration. Mech. Anal. 182 (2006), 299-331. (2006) Zbl1111.35144MR2259335DOI10.1007/s00205-006-0429-2
  17. Escobedo, M., Vázquez, J. L., Zuazua, E., 10.1512/iumj.1993.42.42065, Indiana Univ. Math. J. 42 (1993), 1413-1440. (1993) Zbl0791.35059MR1266100DOI10.1512/iumj.1993.42.42065
  18. Escobedo, M., Vázquez, J. L., Zuazua, E., 10.1007/BF00392203, Arch. Ration. Mech. Anal. 124 (1993), 43-65. (1993) Zbl0807.35059MR1233647DOI10.1007/BF00392203
  19. Escobedo, M., Zuazua, E., 10.1016/0022-1236(91)90105-E, J. Funct. Anal. 100 (1991), 119-161. (1991) Zbl0762.35011MR1124296DOI10.1016/0022-1236(91)90105-E
  20. Fowler, A. C., Evolution equations for dunes and drumlins, RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), 377-387. (2002) Zbl1229.86014MR1985743
  21. Gatto, A. E., 10.1006/jfan.2001.3836, J. Funct. Anal. 188 (2002), 27-37. (2002) Zbl1031.43005MR1878630DOI10.1006/jfan.2001.3836
  22. Ignat, L. I., Stan, D., 10.1112/jlms.12110, J. Lond. Math. Soc., II. Ser. 97 (2018), 258-281. (2018) Zbl1387.35051MR3789847DOI10.1112/jlms.12110
  23. Kamin, S., Vázquez, J. L., 10.4171/RMI/77, Rev. Mat. Iberoam. 4 (1988), 339-354. (1988) Zbl0699.35158MR1028745DOI10.4171/RMI/77
  24. Kluwick, A., Cox, E. A., Exner, A., Grinschgl, C., 10.1007/s00707-009-0188-x, Acta Mech. 210 (2010), 135-157. (2010) Zbl1308.76055DOI10.1007/s00707-009-0188-x
  25. Kružkov, S. N., 10.1070/SM1970v010n02ABEH002156, Math. USSR, Sb. 10 (1970), 217-243. (1970) Zbl0215.16203MR0267257DOI10.1070/SM1970v010n02ABEH002156
  26. Kwaśnicki, M., 10.1515/fca-2017-0002, Fract. Calc. Appl. Anal. 20 (2017), 7-51. (2017) Zbl1375.47038MR3613319DOI10.1515/fca-2017-0002
  27. Liu, T.-P., Pierre, M., 10.1016/0022-0396(84)90096-2, J. Differ. Equations 51 (1984), 419-441. (1984) Zbl0545.35057MR0735207DOI10.1016/0022-0396(84)90096-2
  28. Mainardi, F., Luchko, Y., Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 4 (2001), 153-192. (2001) Zbl1054.35156MR1829592
  29. Marchaud, A., Sur les dérivées et sur les différences des fonctions de variables réelles, J. Math. Pures Appl. (9) 6 (1927), 337-425 French 9999JFM99999 53.0232.02. (1927) MR3532941
  30. Pruitt, W. E., Taylor, S. J., 10.1090/S0002-9947-1969-0250372-3, Trans. Am. Math. Soc. 146 (1969), 299-321. (1969) Zbl0229.60052MR0250372DOI10.1090/S0002-9947-1969-0250372-3
  31. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
  32. Sato, K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics 68. Cambridge University Press, Cambridge (1999). (1999) Zbl0973.60001MR1739520
  33. Simon, J., 10.1007/BF01762360, Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. (1987) Zbl0629.46031MR0916688DOI10.1007/BF01762360
  34. Sugimoto, N., Kakutani, T., 10.1016/0165-2125(85)90019-8, Wave Motion 7 (1985), 447-458. (1985) Zbl0588.73046MR0802984DOI10.1016/0165-2125(85)90019-8
  35. Viertl, N., Viscous Regularisation of Weak Laminar Hydraulic Jumps and Bores in Two Layer Shallow Water Flow: Ph.D. Thesis, Technische Universität Wien, Wien (2005). (2005) 
  36. Visan, M., 10.1215/S0012-7094-07-13825-0, Duke Math. J. 138 (2007), 281-374. (2007) Zbl1131.35081MR2318286DOI10.1215/S0012-7094-07-13825-0
  37. Weyl, H., Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung, Vierteljschr. Naturforsch. Ges. Zürich 62 (1917), 296-302 German 9999JFM99999 46.0437.01. (1917) MR3618577

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.