Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case
Carlota Maria Cuesta; Xuban Diez-Izagirre
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1057-1080
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCuesta, Carlota Maria, and Diez-Izagirre, Xuban. "Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case." Czechoslovak Mathematical Journal 73.4 (2023): 1057-1080. <http://eudml.org/doc/299355>.
@article{Cuesta2023,
abstract = {We study the large time behaviour of the solutions of a nonlocal regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order $1+\alpha $, with $\alpha \in (0,1)$, which is a Riesz-Feller operator. The nonlinear flux is given by the locally Lipschitz function $|u|^\{q-1\}u/q$ for $q>1$. We show that in the sub-critical case, $1<q < 1 +\alpha $, the large time behaviour is governed by the unique entropy solution of the scalar conservation law. Our proof adapts the proofs of the analogous results for the local case (where the regularisation is the Laplacian) and, more closely, the ones for the regularisation given by the fractional Laplacian with order larger than one, see L. I. Ignat and D. Stan (2018). The main difference is that our operator is not symmetric and its Fourier symbol is not real. We can also adapt the proof and obtain similar results for general Riesz-Feller operators.},
author = {Cuesta, Carlota Maria, Diez-Izagirre, Xuban},
journal = {Czechoslovak Mathematical Journal},
keywords = {large time asymptotic; regularisation of conservation law; Riesz-Feller operator},
language = {eng},
number = {4},
pages = {1057-1080},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case},
url = {http://eudml.org/doc/299355},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Cuesta, Carlota Maria
AU - Diez-Izagirre, Xuban
TI - Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1057
EP - 1080
AB - We study the large time behaviour of the solutions of a nonlocal regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order $1+\alpha $, with $\alpha \in (0,1)$, which is a Riesz-Feller operator. The nonlinear flux is given by the locally Lipschitz function $|u|^{q-1}u/q$ for $q>1$. We show that in the sub-critical case, $1<q < 1 +\alpha $, the large time behaviour is governed by the unique entropy solution of the scalar conservation law. Our proof adapts the proofs of the analogous results for the local case (where the regularisation is the Laplacian) and, more closely, the ones for the regularisation given by the fractional Laplacian with order larger than one, see L. I. Ignat and D. Stan (2018). The main difference is that our operator is not symmetric and its Fourier symbol is not real. We can also adapt the proof and obtain similar results for general Riesz-Feller operators.
LA - eng
KW - large time asymptotic; regularisation of conservation law; Riesz-Feller operator
UR - http://eudml.org/doc/299355
ER -
References
top- Achleitner, F., Hittmeir, S., Schmeiser, C., 10.1016/j.jde.2010.11.015, J. Differ. Equations 250 (2011), 2177-2196. (2011) Zbl1213.47066MR2763569DOI10.1016/j.jde.2010.11.015
- Achleitner, F., Kuehn, C., 10.57262/ade/1435064517, Adv. Differ. Equ. 20 (2015), 887-936. (2015) Zbl1327.35053MR3360395DOI10.57262/ade/1435064517
- Achleitner, F., Ueda, Y., 10.1007/s00028-018-0426-6, J. Evol. Equ. 18 (2018), 923-946. (2018) Zbl06932128MR3820428DOI10.1007/s00028-018-0426-6
- Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65. Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
- Bertoin, J., Lévy Processes, Cambridge Tracts in Mathematics 121. Cambridge University Press, Cambridge (1996). (1996) Zbl0861.60003MR1406564
- Biler, P., Karch, G., Woyczyński, W. A., 10.4064/sm148-2-5, Stud. Math. 148 (2001), 171-192. (2001) Zbl0990.35023MR1881259DOI10.4064/sm148-2-5
- Biler, P., Karch, G., Woyczyński, W. A., 10.1016/S0294-1449(01)00080-4, Ann. Inst. H. Poincaré, Anal. Non Linéaire 18 (2001), 613-637. (2001) Zbl0991.35009MR1849690DOI10.1016/S0294-1449(01)00080-4
- Bouharguane, A., Carles, R., 10.1090/S0025-5718-2013-02757-3, Math. Comput. 83 (2014), 1121-1141. (2014) Zbl1286.65109MR3167452DOI10.1090/S0025-5718-2013-02757-3
- Cazacu, C. M., Ignat, L. I., Pazoto, A. F., 10.1088/1361-6544/aa773a, Nonlinearity 30 (2017), 3126-3150. (2017) Zbl1372.35040MR3685664DOI10.1088/1361-6544/aa773a
- Christ, F. M., Weinstein, M. I., 10.1016/0022-1236(91)90103-C, J. Funct. Anal. 100 (1991), 87-109. (1991) Zbl0743.35067MR1124294DOI10.1016/0022-1236(91)90103-C
- Cifani, S., Jakobsen, E. R., 10.1016/j.anihpc.2011.02.006, Ann. Inst. H. Poincaré, Anal. Non Linéaire 28 (2011), 413-441. (2011) Zbl1217.35204MR2795714DOI10.1016/j.anihpc.2011.02.006
- Cuesta, C. M., Achleitner, F., 10.1016/j.jde.2016.09.029, J. Differ. Equations 262 (2017), 1155-1160. (2017) Zbl06652621MR3569418DOI10.1016/j.jde.2016.09.029
- J. Diestel, J. J. Uhl, Jr., 10.1090/surv/015, Mathematical Surveys 15. AMS, Providence (1977). (1977) Zbl0369.46039MR0453964DOI10.1090/surv/015
- Diez-Izagirre, X., Non-Local Regularisations of Scalar Conservation Laws: Doctoral Thesis, University of the Basque Country, Azpeitia (2021), Spanish. (2021)
- Diez-Izagirre, X., Cuesta, C. M., 10.1007/s00605-020-01413-8, Monatsh. Math. 192 (2020), 513-550. (2020) Zbl1441.35165MR4109515DOI10.1007/s00605-020-01413-8
- Droniou, J., Imbert, C., 10.1007/s00205-006-0429-2, Arch. Ration. Mech. Anal. 182 (2006), 299-331. (2006) Zbl1111.35144MR2259335DOI10.1007/s00205-006-0429-2
- Escobedo, M., Vázquez, J. L., Zuazua, E., 10.1512/iumj.1993.42.42065, Indiana Univ. Math. J. 42 (1993), 1413-1440. (1993) Zbl0791.35059MR1266100DOI10.1512/iumj.1993.42.42065
- Escobedo, M., Vázquez, J. L., Zuazua, E., 10.1007/BF00392203, Arch. Ration. Mech. Anal. 124 (1993), 43-65. (1993) Zbl0807.35059MR1233647DOI10.1007/BF00392203
- Escobedo, M., Zuazua, E., 10.1016/0022-1236(91)90105-E, J. Funct. Anal. 100 (1991), 119-161. (1991) Zbl0762.35011MR1124296DOI10.1016/0022-1236(91)90105-E
- Fowler, A. C., Evolution equations for dunes and drumlins, RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), 377-387. (2002) Zbl1229.86014MR1985743
- Gatto, A. E., 10.1006/jfan.2001.3836, J. Funct. Anal. 188 (2002), 27-37. (2002) Zbl1031.43005MR1878630DOI10.1006/jfan.2001.3836
- Ignat, L. I., Stan, D., 10.1112/jlms.12110, J. Lond. Math. Soc., II. Ser. 97 (2018), 258-281. (2018) Zbl1387.35051MR3789847DOI10.1112/jlms.12110
- Kamin, S., Vázquez, J. L., 10.4171/RMI/77, Rev. Mat. Iberoam. 4 (1988), 339-354. (1988) Zbl0699.35158MR1028745DOI10.4171/RMI/77
- Kluwick, A., Cox, E. A., Exner, A., Grinschgl, C., 10.1007/s00707-009-0188-x, Acta Mech. 210 (2010), 135-157. (2010) Zbl1308.76055DOI10.1007/s00707-009-0188-x
- Kružkov, S. N., 10.1070/SM1970v010n02ABEH002156, Math. USSR, Sb. 10 (1970), 217-243. (1970) Zbl0215.16203MR0267257DOI10.1070/SM1970v010n02ABEH002156
- Kwaśnicki, M., 10.1515/fca-2017-0002, Fract. Calc. Appl. Anal. 20 (2017), 7-51. (2017) Zbl1375.47038MR3613319DOI10.1515/fca-2017-0002
- Liu, T.-P., Pierre, M., 10.1016/0022-0396(84)90096-2, J. Differ. Equations 51 (1984), 419-441. (1984) Zbl0545.35057MR0735207DOI10.1016/0022-0396(84)90096-2
- Mainardi, F., Luchko, Y., Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 4 (2001), 153-192. (2001) Zbl1054.35156MR1829592
- Marchaud, A., Sur les dérivées et sur les différences des fonctions de variables réelles, J. Math. Pures Appl. (9) 6 (1927), 337-425 French 9999JFM99999 53.0232.02. (1927) MR3532941
- Pruitt, W. E., Taylor, S. J., 10.1090/S0002-9947-1969-0250372-3, Trans. Am. Math. Soc. 146 (1969), 299-321. (1969) Zbl0229.60052MR0250372DOI10.1090/S0002-9947-1969-0250372-3
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
- Sato, K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics 68. Cambridge University Press, Cambridge (1999). (1999) Zbl0973.60001MR1739520
- Simon, J., 10.1007/BF01762360, Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. (1987) Zbl0629.46031MR0916688DOI10.1007/BF01762360
- Sugimoto, N., Kakutani, T., 10.1016/0165-2125(85)90019-8, Wave Motion 7 (1985), 447-458. (1985) Zbl0588.73046MR0802984DOI10.1016/0165-2125(85)90019-8
- Viertl, N., Viscous Regularisation of Weak Laminar Hydraulic Jumps and Bores in Two Layer Shallow Water Flow: Ph.D. Thesis, Technische Universität Wien, Wien (2005). (2005)
- Visan, M., 10.1215/S0012-7094-07-13825-0, Duke Math. J. 138 (2007), 281-374. (2007) Zbl1131.35081MR2318286DOI10.1215/S0012-7094-07-13825-0
- Weyl, H., Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung, Vierteljschr. Naturforsch. Ges. Zürich 62 (1917), 296-302 German 9999JFM99999 46.0437.01. (1917) MR3618577
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.