Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space

Michael Gil'

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 355-366
  • ISSN: 0011-4642

Abstract

top
We consider the equation d y ( t ) / d t = ( A + B ( t ) ) y ( t ) ( t 0 ) , where A is the generator of an analytic semigroup ( e A t ) t 0 on a Banach space 𝒳 , B ( t ) is a variable bounded operator in 𝒳 . It is assumed that the commutator K ( t ) = A B ( t ) - B ( t ) A has the following property: there is a linear operator S having a bounded left-inverse operator S l - 1 such that S e A t is integrable and the operator K ( t ) S l - 1 is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations.

How to cite

top

Gil', Michael. "Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space." Czechoslovak Mathematical Journal 73.2 (2023): 355-366. <http://eudml.org/doc/299363>.

@article{Gil2023,
abstract = {We consider the equation $\{\rm d\}y(t)/\{\rm d\}t=(A+B(t))y(t)$$(t\ge 0)$, where $A$ is the generator of an analytic semigroup $(\{\rm e\}^\{At\})_\{t\ge 0\}$ on a Banach space $\{\mathcal \{X\}\}$, $B(t)$ is a variable bounded operator in $\{\mathcal \{X\}\}$. It is assumed that the commutator $K(t)=AB(t)-B(t)A$ has the following property: there is a linear operator $S$ having a bounded left-inverse operator $S_l^\{-1\}$ such that $\Vert S \{\rm e\}^\{At\}\Vert $ is integrable and the operator $K(t)S_l^\{-1\}$ is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations.},
author = {Gil', Michael},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach space; differential equation; linear nonautonomous equation; exponential stability; commutator; parabolic equation},
language = {eng},
number = {2},
pages = {355-366},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space},
url = {http://eudml.org/doc/299363},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Gil', Michael
TI - Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 355
EP - 366
AB - We consider the equation ${\rm d}y(t)/{\rm d}t=(A+B(t))y(t)$$(t\ge 0)$, where $A$ is the generator of an analytic semigroup $({\rm e}^{At})_{t\ge 0}$ on a Banach space ${\mathcal {X}}$, $B(t)$ is a variable bounded operator in ${\mathcal {X}}$. It is assumed that the commutator $K(t)=AB(t)-B(t)A$ has the following property: there is a linear operator $S$ having a bounded left-inverse operator $S_l^{-1}$ such that $\Vert S {\rm e}^{At}\Vert $ is integrable and the operator $K(t)S_l^{-1}$ is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations.
LA - eng
KW - Banach space; differential equation; linear nonautonomous equation; exponential stability; commutator; parabolic equation
UR - http://eudml.org/doc/299363
ER -

References

top
  1. Alabau, F., Cannarsa, P., Komornik, V., 10.1007/s00028-002-8083-0, J. Evol. Equ. 2 (2002), 127-150. (2002) Zbl1011.35018MR1914654DOI10.1007/s00028-002-8083-0
  2. Andrica, D., (eds.), T. M. Rassias, 10.1007/978-3-030-27407-8, Springer Optimization and Its Applications 151. Springer, Cham (2019). (2019) Zbl1431.26003MR3972115DOI10.1007/978-3-030-27407-8
  3. Chicone, C., Latushkin, Y., 10.1090/surv/070, Mathematical Survey and Monographs 70. AMS, Providence (1999). (1999) Zbl0970.47027MR1707332DOI10.1090/surv/070
  4. Cialdea, A., Lanzara, F., 10.4171/RLM/661, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 24 (2013), 451-469. (2013) Zbl1282.35057MR3129748DOI10.4171/RLM/661
  5. Curtain, R. F., Oostveen, J. C., 10.1016/S0167-6911(98)00109-1, Syst. Control Lett. 37 (1999), 11-18. (1999) Zbl0917.93059MR1752433DOI10.1016/S0167-6911(98)00109-1
  6. Daleckii, Y. L., Krein, M. G., 10.1090/mmono/043, Translations of Mathematical Monographs 43. AMS, Providence (1974). (1974) Zbl0286.34094MR0352639DOI10.1090/mmono/043
  7. Dragan, V., Morozan, T., 10.1093/imamci/dnq013, IMA J. Math. Control Inf. 27 (2010), 267-307. (2010) Zbl1222.34066MR2721169DOI10.1093/imamci/dnq013
  8. Fourrier, N., Lasiecka, I., 10.3934/eect.2013.2.631, Evol. Equ. Control Theory 2 (2013), 631-667. (2013) Zbl1277.35232MR3177247DOI10.3934/eect.2013.2.631
  9. Gil', M., 10.1155/2013/207581, Int. J. Partial Differ. Equ. 2013 (2013), Article ID 207581, 5 pages. (2013) Zbl1304.35090DOI10.1155/2013/207581
  10. Gil', M. I., 10.1142/10482, World Scientific, Hackensack (2018). (2018) Zbl1422.47004MR3751395DOI10.1142/10482
  11. Gil', M. I., 10.4171/RLM/822, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 29 (2018), 589-596. (2018) Zbl07032412MR3896255DOI10.4171/RLM/822
  12. Gil', M. I., 10.1093/imamci/dny035, IMA J. Math. Control Inf. 37 (2020), 19-26. (2020) Zbl1436.93115MR4073909DOI10.1093/imamci/dny035
  13. Henry, D., 10.1007/BFb0089647, Lectures Notes in Mathematics 840. Springer, Berlin (1981). (1981) Zbl0456.35001MR0610244DOI10.1007/BFb0089647
  14. Krein, S. G., 10.1090/mmono/029, Translations of Mathematical Monographs 29. AMS, Providence (1972). (1972) Zbl0229.34050MR0342804DOI10.1090/mmono/029
  15. Laasri, H., El-Mennaoui, O., 10.1007/s10587-013-0060-y, Czech. Math. J. 63 (2013), 887-908. (2013) Zbl1313.35203MR3165503DOI10.1007/s10587-013-0060-y
  16. Nicaise, S., 10.1007/s13348-017-0192-8, Collect. Math. 68 (2017), 433-462. (2017) Zbl1375.35047MR3683020DOI10.1007/s13348-017-0192-8
  17. Oostveen, J., 10.1137/1.9780898719864, Frontiers in Applied Mathematics 20. SIAM, Philadelphia (2000). (2000) Zbl0964.93004MR1773377DOI10.1137/1.9780898719864
  18. Pucci, P., Serrin, J., 10.1002/(SICI)1097-0312(199602)49:2<177::AID-CPA3>3.0.CO;2-B, Commun. Pure Appl. Math. 49 (1996), 177-216. (1996) Zbl0865.35089MR1371927DOI10.1002/(SICI)1097-0312(199602)49:2<177::AID-CPA3>3.0.CO;2-B

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.