Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 355-366
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGil', Michael. "Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space." Czechoslovak Mathematical Journal 73.2 (2023): 355-366. <http://eudml.org/doc/299363>.
@article{Gil2023,
abstract = {We consider the equation $\{\rm d\}y(t)/\{\rm d\}t=(A+B(t))y(t)$$(t\ge 0)$, where $A$ is the generator of an analytic semigroup $(\{\rm e\}^\{At\})_\{t\ge 0\}$ on a Banach space $\{\mathcal \{X\}\}$, $B(t)$ is a variable bounded operator in $\{\mathcal \{X\}\}$. It is assumed that the commutator $K(t)=AB(t)-B(t)A$ has the following property: there is a linear operator $S$ having a bounded left-inverse operator $S_l^\{-1\}$ such that $\Vert S \{\rm e\}^\{At\}\Vert $ is integrable and the operator $K(t)S_l^\{-1\}$ is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations.},
author = {Gil', Michael},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach space; differential equation; linear nonautonomous equation; exponential stability; commutator; parabolic equation},
language = {eng},
number = {2},
pages = {355-366},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space},
url = {http://eudml.org/doc/299363},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Gil', Michael
TI - Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 355
EP - 366
AB - We consider the equation ${\rm d}y(t)/{\rm d}t=(A+B(t))y(t)$$(t\ge 0)$, where $A$ is the generator of an analytic semigroup $({\rm e}^{At})_{t\ge 0}$ on a Banach space ${\mathcal {X}}$, $B(t)$ is a variable bounded operator in ${\mathcal {X}}$. It is assumed that the commutator $K(t)=AB(t)-B(t)A$ has the following property: there is a linear operator $S$ having a bounded left-inverse operator $S_l^{-1}$ such that $\Vert S {\rm e}^{At}\Vert $ is integrable and the operator $K(t)S_l^{-1}$ is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations.
LA - eng
KW - Banach space; differential equation; linear nonautonomous equation; exponential stability; commutator; parabolic equation
UR - http://eudml.org/doc/299363
ER -
References
top- Alabau, F., Cannarsa, P., Komornik, V., 10.1007/s00028-002-8083-0, J. Evol. Equ. 2 (2002), 127-150. (2002) Zbl1011.35018MR1914654DOI10.1007/s00028-002-8083-0
- Andrica, D., (eds.), T. M. Rassias, 10.1007/978-3-030-27407-8, Springer Optimization and Its Applications 151. Springer, Cham (2019). (2019) Zbl1431.26003MR3972115DOI10.1007/978-3-030-27407-8
- Chicone, C., Latushkin, Y., 10.1090/surv/070, Mathematical Survey and Monographs 70. AMS, Providence (1999). (1999) Zbl0970.47027MR1707332DOI10.1090/surv/070
- Cialdea, A., Lanzara, F., 10.4171/RLM/661, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 24 (2013), 451-469. (2013) Zbl1282.35057MR3129748DOI10.4171/RLM/661
- Curtain, R. F., Oostveen, J. C., 10.1016/S0167-6911(98)00109-1, Syst. Control Lett. 37 (1999), 11-18. (1999) Zbl0917.93059MR1752433DOI10.1016/S0167-6911(98)00109-1
- Daleckii, Y. L., Krein, M. G., 10.1090/mmono/043, Translations of Mathematical Monographs 43. AMS, Providence (1974). (1974) Zbl0286.34094MR0352639DOI10.1090/mmono/043
- Dragan, V., Morozan, T., 10.1093/imamci/dnq013, IMA J. Math. Control Inf. 27 (2010), 267-307. (2010) Zbl1222.34066MR2721169DOI10.1093/imamci/dnq013
- Fourrier, N., Lasiecka, I., 10.3934/eect.2013.2.631, Evol. Equ. Control Theory 2 (2013), 631-667. (2013) Zbl1277.35232MR3177247DOI10.3934/eect.2013.2.631
- Gil', M., 10.1155/2013/207581, Int. J. Partial Differ. Equ. 2013 (2013), Article ID 207581, 5 pages. (2013) Zbl1304.35090DOI10.1155/2013/207581
- Gil', M. I., 10.1142/10482, World Scientific, Hackensack (2018). (2018) Zbl1422.47004MR3751395DOI10.1142/10482
- Gil', M. I., 10.4171/RLM/822, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 29 (2018), 589-596. (2018) Zbl07032412MR3896255DOI10.4171/RLM/822
- Gil', M. I., 10.1093/imamci/dny035, IMA J. Math. Control Inf. 37 (2020), 19-26. (2020) Zbl1436.93115MR4073909DOI10.1093/imamci/dny035
- Henry, D., 10.1007/BFb0089647, Lectures Notes in Mathematics 840. Springer, Berlin (1981). (1981) Zbl0456.35001MR0610244DOI10.1007/BFb0089647
- Krein, S. G., 10.1090/mmono/029, Translations of Mathematical Monographs 29. AMS, Providence (1972). (1972) Zbl0229.34050MR0342804DOI10.1090/mmono/029
- Laasri, H., El-Mennaoui, O., 10.1007/s10587-013-0060-y, Czech. Math. J. 63 (2013), 887-908. (2013) Zbl1313.35203MR3165503DOI10.1007/s10587-013-0060-y
- Nicaise, S., 10.1007/s13348-017-0192-8, Collect. Math. 68 (2017), 433-462. (2017) Zbl1375.35047MR3683020DOI10.1007/s13348-017-0192-8
- Oostveen, J., 10.1137/1.9780898719864, Frontiers in Applied Mathematics 20. SIAM, Philadelphia (2000). (2000) Zbl0964.93004MR1773377DOI10.1137/1.9780898719864
- Pucci, P., Serrin, J., 10.1002/(SICI)1097-0312(199602)49:2<177::AID-CPA3>3.0.CO;2-B, Commun. Pure Appl. Math. 49 (1996), 177-216. (1996) Zbl0865.35089MR1371927DOI10.1002/(SICI)1097-0312(199602)49:2<177::AID-CPA3>3.0.CO;2-B
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.