Inverse rate-dependent Prandtl-Ishlinskii operators and applications

Mohammad Al Janaideh; Pavel Krejčí; Giselle A. Monteiro

Applications of Mathematics (2023)

  • Volume: 68, Issue: 6, page 713-726
  • ISSN: 0862-7940

Abstract

top
In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. We prove the existence of an analytical inversion formula, and illustrate its applicability in the study of error bounds for inverse compensation.

How to cite

top

Al Janaideh, Mohammad, Krejčí, Pavel, and Monteiro, Giselle A.. "Inverse rate-dependent Prandtl-Ishlinskii operators and applications." Applications of Mathematics 68.6 (2023): 713-726. <http://eudml.org/doc/299366>.

@article{AlJanaideh2023,
abstract = {In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. We prove the existence of an analytical inversion formula, and illustrate its applicability in the study of error bounds for inverse compensation.},
author = {Al Janaideh, Mohammad, Krejčí, Pavel, Monteiro, Giselle A.},
journal = {Applications of Mathematics},
keywords = {hysteresis; Prandtl-Ishlinskii operator; inverse rate-dependent Prandtl-Ishlinskii operator},
language = {eng},
number = {6},
pages = {713-726},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inverse rate-dependent Prandtl-Ishlinskii operators and applications},
url = {http://eudml.org/doc/299366},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Al Janaideh, Mohammad
AU - Krejčí, Pavel
AU - Monteiro, Giselle A.
TI - Inverse rate-dependent Prandtl-Ishlinskii operators and applications
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 6
SP - 713
EP - 726
AB - In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. We prove the existence of an analytical inversion formula, and illustrate its applicability in the study of error bounds for inverse compensation.
LA - eng
KW - hysteresis; Prandtl-Ishlinskii operator; inverse rate-dependent Prandtl-Ishlinskii operator
UR - http://eudml.org/doc/299366
ER -

References

top
  1. Janaideh, M. Al, Krejčí, P., 10.1016/j.physb.2011.01.062, Phys. B 406 (2011), 1528-1532. (2011) DOI10.1016/j.physb.2011.01.062
  2. Janaideh, M. Al, Rakotondrabe, M., 10.1007/s11071-021-06460-w, Nonlinear Dyn. 104 (2021), 3385-3405. (2021) DOI10.1007/s11071-021-06460-w
  3. Janaideh, M. Al, Xu, R., Tan, X., 10.1109/TCST.2020.3046019, IEEE Trans. Control Syst. Technol. 29 (2021), 2687-2695. (2021) MR4583252DOI10.1109/TCST.2020.3046019
  4. Davino, D., Giustiniani, A., Visone, C., 10.5772/50892, Smart Actuation and Sensing Systems: Recent Advances and Future Challenges IntechOpen, London (2012), 487-512. (2012) DOI10.5772/50892
  5. Iyer, R. V., Tan, X., Krishnaprasad, P. S., 10.1109/TAC.2005.849205, IEEE Trans. Autom. Control 50 (2005), 798-810. (2005) Zbl1365.93207MR2141996DOI10.1109/TAC.2005.849205
  6. Khasawneh, H. J., Abo-Hammour, Z. S., Saaideh, M. I. Al, Momani, S. M., 10.1140/epjp/i2019-12883-7, Eur. Phys. J. Plus 134 (2019), Article ID 507, 17 pages. (2019) DOI10.1140/epjp/i2019-12883-7
  7. Krejčí, P., Hysteresis, Convexity and Dissipation in Hyperbolic Equations, GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). (1996) Zbl1187.35003MR2466538
  8. Krejčí, P., 10.1088/1742-6596/55/1/014, J. Phys., Conf. Ser. 55 (2006), 144-154. (2006) DOI10.1088/1742-6596/55/1/014
  9. Krejčí, P., Janaideh, M. Al, Deasy, F., 10.1016/j.physb.2011.06.020, Phys. B 407 (2012), 1354-1356. (2012) DOI10.1016/j.physb.2011.06.020
  10. Krejčí, P., Kuhnen, K., 10.1049/ip-cta:20010375, IEE Proc., Control Theory Appl. 148 (2001), 185-192. (2001) DOI10.1049/ip-cta:20010375
  11. Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D., 10.3934/dcdsb.2015.20.2949, Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949-2965. (2015) Zbl1335.47043MR3402678DOI10.3934/dcdsb.2015.20.2949
  12. Krejčí, P., Monteiro, G. A., 10.3934/dcdsb.2018299, Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 3051-3066. (2019) Zbl1421.34030MR3986192DOI10.3934/dcdsb.2018299
  13. Krejčí, P., Monteiro, G. A., 10.1016/j.nonrwa.2018.10.001, Nonlinear Anal., Real World Appl. 46 (2019), 403-420. (2019) Zbl1461.74025MR3887137DOI10.1016/j.nonrwa.2018.10.001
  14. Kuhnen, K., Krejčí, P., 10.1109/TAC.2009.2012984, IEEE Trans. Autom. Control 54 (2009), 537-550. (2009) Zbl1367.74037MR2191546DOI10.1109/TAC.2009.2012984
  15. Leang, K. K., Devasia, S., 10.1016/j.mechatronics.2005.11.006, Mechatron. 16 (2006), 141-158. (2006) DOI10.1016/j.mechatronics.2005.11.006
  16. Tan, X., Baras, J. S., 10.1016/j.automatica.2004.04.006, Automatica 40 (2004), 1469-1480. (2004) Zbl1055.93538MR2153812DOI10.1016/j.automatica.2004.04.006
  17. Visone, C., 10.1088/1742-6596/138/1/012028, J. Phys., Conf. Ser. 138 (2008), Article ID 012028, 24 pages. (2008) DOI10.1088/1742-6596/138/1/012028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.