Inverse rate-dependent Prandtl-Ishlinskii operators and applications
Mohammad Al Janaideh; Pavel Krejčí; Giselle A. Monteiro
Applications of Mathematics (2023)
- Volume: 68, Issue: 6, page 713-726
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAl Janaideh, Mohammad, Krejčí, Pavel, and Monteiro, Giselle A.. "Inverse rate-dependent Prandtl-Ishlinskii operators and applications." Applications of Mathematics 68.6 (2023): 713-726. <http://eudml.org/doc/299366>.
@article{AlJanaideh2023,
abstract = {In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. We prove the existence of an analytical inversion formula, and illustrate its applicability in the study of error bounds for inverse compensation.},
author = {Al Janaideh, Mohammad, Krejčí, Pavel, Monteiro, Giselle A.},
journal = {Applications of Mathematics},
keywords = {hysteresis; Prandtl-Ishlinskii operator; inverse rate-dependent Prandtl-Ishlinskii operator},
language = {eng},
number = {6},
pages = {713-726},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inverse rate-dependent Prandtl-Ishlinskii operators and applications},
url = {http://eudml.org/doc/299366},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Al Janaideh, Mohammad
AU - Krejčí, Pavel
AU - Monteiro, Giselle A.
TI - Inverse rate-dependent Prandtl-Ishlinskii operators and applications
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 6
SP - 713
EP - 726
AB - In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. We prove the existence of an analytical inversion formula, and illustrate its applicability in the study of error bounds for inverse compensation.
LA - eng
KW - hysteresis; Prandtl-Ishlinskii operator; inverse rate-dependent Prandtl-Ishlinskii operator
UR - http://eudml.org/doc/299366
ER -
References
top- Janaideh, M. Al, Krejčí, P., 10.1016/j.physb.2011.01.062, Phys. B 406 (2011), 1528-1532. (2011) DOI10.1016/j.physb.2011.01.062
- Janaideh, M. Al, Rakotondrabe, M., 10.1007/s11071-021-06460-w, Nonlinear Dyn. 104 (2021), 3385-3405. (2021) DOI10.1007/s11071-021-06460-w
- Janaideh, M. Al, Xu, R., Tan, X., 10.1109/TCST.2020.3046019, IEEE Trans. Control Syst. Technol. 29 (2021), 2687-2695. (2021) MR4583252DOI10.1109/TCST.2020.3046019
- Davino, D., Giustiniani, A., Visone, C., 10.5772/50892, Smart Actuation and Sensing Systems: Recent Advances and Future Challenges IntechOpen, London (2012), 487-512. (2012) DOI10.5772/50892
- Iyer, R. V., Tan, X., Krishnaprasad, P. S., 10.1109/TAC.2005.849205, IEEE Trans. Autom. Control 50 (2005), 798-810. (2005) Zbl1365.93207MR2141996DOI10.1109/TAC.2005.849205
- Khasawneh, H. J., Abo-Hammour, Z. S., Saaideh, M. I. Al, Momani, S. M., 10.1140/epjp/i2019-12883-7, Eur. Phys. J. Plus 134 (2019), Article ID 507, 17 pages. (2019) DOI10.1140/epjp/i2019-12883-7
- Krejčí, P., Hysteresis, Convexity and Dissipation in Hyperbolic Equations, GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). (1996) Zbl1187.35003MR2466538
- Krejčí, P., 10.1088/1742-6596/55/1/014, J. Phys., Conf. Ser. 55 (2006), 144-154. (2006) DOI10.1088/1742-6596/55/1/014
- Krejčí, P., Janaideh, M. Al, Deasy, F., 10.1016/j.physb.2011.06.020, Phys. B 407 (2012), 1354-1356. (2012) DOI10.1016/j.physb.2011.06.020
- Krejčí, P., Kuhnen, K., 10.1049/ip-cta:20010375, IEE Proc., Control Theory Appl. 148 (2001), 185-192. (2001) DOI10.1049/ip-cta:20010375
- Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D., 10.3934/dcdsb.2015.20.2949, Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949-2965. (2015) Zbl1335.47043MR3402678DOI10.3934/dcdsb.2015.20.2949
- Krejčí, P., Monteiro, G. A., 10.3934/dcdsb.2018299, Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 3051-3066. (2019) Zbl1421.34030MR3986192DOI10.3934/dcdsb.2018299
- Krejčí, P., Monteiro, G. A., 10.1016/j.nonrwa.2018.10.001, Nonlinear Anal., Real World Appl. 46 (2019), 403-420. (2019) Zbl1461.74025MR3887137DOI10.1016/j.nonrwa.2018.10.001
- Kuhnen, K., Krejčí, P., 10.1109/TAC.2009.2012984, IEEE Trans. Autom. Control 54 (2009), 537-550. (2009) Zbl1367.74037MR2191546DOI10.1109/TAC.2009.2012984
- Leang, K. K., Devasia, S., 10.1016/j.mechatronics.2005.11.006, Mechatron. 16 (2006), 141-158. (2006) DOI10.1016/j.mechatronics.2005.11.006
- Tan, X., Baras, J. S., 10.1016/j.automatica.2004.04.006, Automatica 40 (2004), 1469-1480. (2004) Zbl1055.93538MR2153812DOI10.1016/j.automatica.2004.04.006
- Visone, C., 10.1088/1742-6596/138/1/012028, J. Phys., Conf. Ser. 138 (2008), Article ID 012028, 24 pages. (2008) DOI10.1088/1742-6596/138/1/012028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.