Page 1 Next

Displaying 1 – 20 of 25

Showing per page

A continuum of path-dependent equilibrium solutions induced by sticky expectations

Pavel Krejčí, Eyram Kwame, Harbir Lamba, Dmitrii Rachinskii, Andrei Zagvozdkin (2023)

Applications of Mathematics

We analyze a simple macroeconomic model where rational inflation expectations are replaced by a boundedly rational, and genuinely sticky, response to changes in the actual inflation rate. The stickiness is introduced in a novel way using a mathematical operator that is amenable to rigorous analysis. We prove that, when exogenous noise is absent from the system, the unique equilibrium of the rational expectations model is replaced by an entire line segment of possible equilibria with the one chosen...

A remark on the local Lipschitz continuity of vector hysteresis operators

Pavel Krejčí (2001)

Applications of Mathematics

It is known that the vector stop operator with a convex closed characteristic Z of class C 1 is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping n is Lipschitz continuous on the boundary Z of Z . We prove that in the regular case, this condition is also necessary.

Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity

Olaf Klein (2004)

Applications of Mathematics

The asymptotic behaviour for t of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress...

Dynamics of systems with Preisach memory near equilibria

Stephen McCarthy, Dmitrii Rachinskii (2014)

Mathematica Bohemica

We consider autonomous systems where two scalar differential equations are coupled with the input-output relationship of the Preisach hysteresis operator, which has an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit where the inductive element has a ferromagnetic core with a hysteretic relationship between the magnetic field and the magnetization. Further examples of such systems include lumped hydrological models with two soil layers; they can also appear...

Elastoplastic reaction of a container to water freezing

Pavel Krejčí (2010)

Mathematica Bohemica

The paper deals with a model for water freezing in a deformable elastoplastic container. The mathematical problem consists of a system of one parabolic equation for temperature, one integrodifferential equation with a hysteresis operator for local volume increment, and one differential inclusion for the water content. The problem is shown to admit a unique global uniformly bounded weak solution.

Homoclinic orbits in a two-patch predator-prey model with Preisach hysteresis operator

Alexander Pimenov, Dmitrii Rachinskii (2014)

Mathematica Bohemica

Systems of operator-differential equations with hysteresis operators can have unstable equilibrium points with an open basin of attraction. Such equilibria can have homoclinic orbits attached to them, and these orbits are robust. In this paper a population dynamics model with hysteretic response of the prey to variations of the predator is introduced. In this model the prey moves between two patches, and the derivative of the Preisach operator is used to describe the hysteretic flow between the...

Homogenization of diffusion equation with scalar hysteresis operator

Jan Franců (2001)

Mathematica Bohemica

The paper deals with a scalar diffusion equation c u t = ( F [ u x ] ) x + f , where F is a Prandtl-Ishlinskii operator and c , f are given functions. In the diffusion or heat conduction equation the linear constitutive relation is replaced by a scalar Prandtl-Ishlinskii hysteresis spatially dependent operator. We prove existence, uniqueness and regularity of solution to the corresponding initial-boundary value problem. The problem is then homogenized by considering a sequence of equations of the above type with spatially periodic...

Integral control of infinite-dimensional systems in the presence of hysteresis: an input-output approach

Hartmut Logemann, Eugene P. Ryan, Ilya Shvartsman (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with integral control of systems with hysteresis. Using an input-output approach, it is shown that application of integral control to the series interconnection of either (a) a hysteretic input nonlinearity, an L2-stable, time-invariant linear system and a non-decreasing globally Lipschitz static output nonlinearity, or (b) an L2-stable, time-invariant linear system and a hysteretic output nonlinearity, guarantees, under certain assumptions, tracking of constant reference...

Inverse rate-dependent Prandtl-Ishlinskii operators and applications

Mohammad Al Janaideh, Pavel Krejčí, Giselle A. Monteiro (2023)

Applications of Mathematics

In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent...

Local Lipschitz continuity of the stop operator

Wolfgang Desch (1998)

Applications of Mathematics

On a closed convex set Z in N with sufficiently smooth ( 𝒲 2 , ) boundary, the stop operator is locally Lipschitz continuous from 𝐖 1 , 1 ( [ 0 , T ] , N ) × Z into 𝐖 1 , 1 ( [ 0 , T ] , N ) . The smoothness of the boundary is essential: A counterexample shows that 𝒞 1 -smoothness is not sufficient.

Memory Effects in Population Dynamics : Spread of Infectious Disease as a Case Study

A. Pimenov, T.C. Kelly, A. Korobeinikov, M.J.A. O’Callaghan, A.V. Pokrovskii, D. Rachinskii (2012)

Mathematical Modelling of Natural Phenomena

Modification of behaviour in response to changes in the environment or ambient conditions, based on memory, is typical of the human and, possibly, many animal species.One obvious example of such adaptivity is, for instance, switching to a safer behaviour when in danger, from either a predator or an infectious disease. In human society such switching to safe behaviour is particularly apparent during epidemics. Mathematically, such changes of behaviour...

On forward and inverse uncertainty quantification for a model for a magneto mechanical device involving a hysteresis operator

Olaf Klein (2023)

Applications of Mathematics

Modeling real world objects and processes one may have to deal with hysteresis effects but also with uncertainties. Following D. Davino, P. Krejčí, and C. Visone (2013), a model for a magnetostrictive material involving a generalized Prandtl-Ishlinski-operator is considered here. Using results of measurements, some parameters in the model are determined and inverse Uncertainty Quantification (UQ) is used to determine random densities to describe the remaining parameters and their uncertainties....

Quasilinear hyperbolic equations with hysteresis

Augusto Visintin (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Hysteresis operators are illustrated, and a weak formulation is studied for an initial- and boundary-value problem associated to the equation 2 / t 2 u + F u + A u = f ; here F is a (possibly discontinuous) hysteresis operator, A is a second order elliptic operator, f is a known function. Problems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence result is outlined.

Systems of reaction-diffusion equations with spatially distributed hysteresis

Pavel Gurevich, Sergey Tikhomirov (2014)

Mathematica Bohemica

We study systems of reaction-diffusion equations with discontinuous spatially distributed hysteresis on the right-hand side. The input of the hysteresis is given by a vector-valued function of space and time. Such systems describe hysteretic interaction of non-diffusive (bacteria, cells, etc.) and diffusive (nutrient, proteins, etc.) substances leading to formation of spatial patterns. We provide sufficient conditions under which the problem is well posed in spite of the assumed discontinuity of...

Currently displaying 1 – 20 of 25

Page 1 Next