Oscillation criteria for two dimensional linear neutral delay difference systems
Mathematica Bohemica (2023)
- Volume: 148, Issue: 4, page 447-460
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topTripathy, Arun Kumar. "Oscillation criteria for two dimensional linear neutral delay difference systems." Mathematica Bohemica 148.4 (2023): 447-460. <http://eudml.org/doc/299368>.
@article{Tripathy2023,
abstract = {In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form \[ \Delta \left[\begin\{matrix\} x(n)+p(n)x(n-m)\\ y(n)+p(n)y(n-m) \end\{matrix\} \right]= \left[\begin\{matrix\} a(n) & b(n) \\ c(n) & d(n) \end\{matrix\} \right]\left[\begin\{matrix\} x(n-\alpha )\\ y(n-\beta ) \end\{matrix\} \right] \]
are established, where $m>0$, $\alpha \ge 0$, $\beta \ge 0$ are integers and $a(n)$, $b(n)$, $c(n)$, $d(n)$, $p(n)$ are sequences of real numbers.},
author = {Tripathy, Arun Kumar},
journal = {Mathematica Bohemica},
keywords = {oscillation; nonoscillation; system of neutral equations; Krasnoselskii's fixed point theorem},
language = {eng},
number = {4},
pages = {447-460},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation criteria for two dimensional linear neutral delay difference systems},
url = {http://eudml.org/doc/299368},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Tripathy, Arun Kumar
TI - Oscillation criteria for two dimensional linear neutral delay difference systems
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 447
EP - 460
AB - In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form \[ \Delta \left[\begin{matrix} x(n)+p(n)x(n-m)\\ y(n)+p(n)y(n-m) \end{matrix} \right]= \left[\begin{matrix} a(n) & b(n) \\ c(n) & d(n) \end{matrix} \right]\left[\begin{matrix} x(n-\alpha )\\ y(n-\beta ) \end{matrix} \right] \]
are established, where $m>0$, $\alpha \ge 0$, $\beta \ge 0$ are integers and $a(n)$, $b(n)$, $c(n)$, $d(n)$, $p(n)$ are sequences of real numbers.
LA - eng
KW - oscillation; nonoscillation; system of neutral equations; Krasnoselskii's fixed point theorem
UR - http://eudml.org/doc/299368
ER -
References
top- Agarwal, R. P., 10.1201/9781420027020, Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). (2000) Zbl0952.39001MR1740241DOI10.1201/9781420027020
- Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D., 10.1155/9789775945198, Hindawi Publishing, New York (2005). (2005) Zbl1084.39001MR2179948DOI10.1155/9789775945198
- Agarwal, R. P., Wong, P. J. Y., 10.1007/978-94-015-8899-7, Mathematics and Its Applications (Dordrecht) 404. Kluwer Academic, Dordrecht (1997). (1997) Zbl0878.39001MR1447437DOI10.1007/978-94-015-8899-7
- Chatzarakis, G. E., Groumpas, E. I., Oscillations in systems of difference equations, Far East J. Dyn. Syst. 17 (2011), 17-31. (2011) Zbl1248.39011MR2934471
- Diblík, J., Łupińska, B., Růžičková, M., Zonenberg, J., 10.1186/s13662-015-0662-9, Adv. Difference Equ. 2015 (2015), Article ID 319, 11 pages. (2015) Zbl1422.39007MR3412562DOI10.1186/s13662-015-0662-9
- Elaydi, S. N., 10.1007/978-1-4757-9168-6, Undergraduate Texts in Mathematics. Springer, New York (1996). (1996) Zbl0840.39002MR1410259DOI10.1007/978-1-4757-9168-6
- Graef, J. R., Thandapani, E., 10.1016/S0898-1221(99)00246-1, Comput. Math. Appl. 38 (1999), 157-165. (1999) Zbl0964.39012MR1713170DOI10.1016/S0898-1221(99)00246-1
- Jiang, J., Tang, X., 10.1016/j.camwa.2005.10.020, Comput. Math. Appl. 54 (2007), 1240-1249. (2007) Zbl1148.39005MR2397675DOI10.1016/j.camwa.2005.10.020
- Li, W.-T., 10.1016/S0898-1221(01)00159-6, Comput. Math. Appl. 42 (2001), 341-355. (2001) Zbl1006.39013MR1837996DOI10.1016/S0898-1221(01)00159-6
- Migda, M., Schmeidel, E., Zdanowicz, M., 10.3934/dcdsb.2018024, Discrete Contin. Dyn. Syst., Ser. B 23 (2018), 359-367. (2018) Zbl1377.39023MR3721848DOI10.3934/dcdsb.2018024
- Parhi, N., Tripathy, A. K., Oscillatory behavior of second order difference equations, Commun. Appl. Nonlinear Anal. 6 (1999), 79-100. (1999) Zbl1110.39303MR1665966
- Parhi, N., Tripathy, A. K., 10.1080/1023619021000047680, J. Difference Equ. Appl. 9 (2003), 933-946. (2003) Zbl1135.39301MR1996344DOI10.1080/1023619021000047680
- Parhi, N., Tripathy, A. K., 10.1023/A:1022975525370, Czech. Math. J. 53 (2003), 83-101. (2003) Zbl1016.39011MR1962001DOI10.1023/A:1022975525370
- Schmeidel, E., 10.21136/MB.2010.140693, Math. Bohem. 135 (2010), 163-170. (2010) Zbl1224.39019MR2723083DOI10.21136/MB.2010.140693
- Schmeidel, E., Zdanowicz, M., 10.2478/tmmp-2021-0025, Tatra Mt. Math. Publ. 79 (2021), 149-162. (2021) Zbl07460182MR4378750DOI10.2478/tmmp-2021-0025
- Stević, S., Diblík, J., Iričanin, J., Šmarda, B. Z., 10.1155/2012/508523, Abstr. Appl. Anal. 2012 (2012), Article ID 508523, 22 pages. (2012) Zbl1242.39011MR2926886DOI10.1155/2012/508523
- Tripathy, A. K., Oscillation criteria for first-order systems of linear difference equations, Electron. J. Differ. Equ. 2009 (2009), Article ID 29, 11 pages. (2009) Zbl1165.39013MR2481103
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.