Oscillation criteria for two dimensional linear neutral delay difference systems

Arun Kumar Tripathy

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 4, page 447-460
  • ISSN: 0862-7959

Abstract

top
In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form Δ x ( n ) + p ( n ) x ( n - m ) y ( n ) + p ( n ) y ( n - m ) = a ( n ) b ( n ) c ( n ) d ( n ) x ( n - α ) y ( n - β ) are established, where m > 0 , α 0 , β 0 are integers and a ( n ) , b ( n ) , c ( n ) , d ( n ) , p ( n ) are sequences of real numbers.

How to cite

top

Tripathy, Arun Kumar. "Oscillation criteria for two dimensional linear neutral delay difference systems." Mathematica Bohemica 148.4 (2023): 447-460. <http://eudml.org/doc/299368>.

@article{Tripathy2023,
abstract = {In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form \[ \Delta \left[\begin\{matrix\} x(n)+p(n)x(n-m)\\ y(n)+p(n)y(n-m) \end\{matrix\} \right]= \left[\begin\{matrix\} a(n) & b(n) \\ c(n) & d(n) \end\{matrix\} \right]\left[\begin\{matrix\} x(n-\alpha )\\ y(n-\beta ) \end\{matrix\} \right] \] are established, where $m>0$, $\alpha \ge 0$, $\beta \ge 0$ are integers and $a(n)$, $b(n)$, $c(n)$, $d(n)$, $p(n)$ are sequences of real numbers.},
author = {Tripathy, Arun Kumar},
journal = {Mathematica Bohemica},
keywords = {oscillation; nonoscillation; system of neutral equations; Krasnoselskii's fixed point theorem},
language = {eng},
number = {4},
pages = {447-460},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation criteria for two dimensional linear neutral delay difference systems},
url = {http://eudml.org/doc/299368},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Tripathy, Arun Kumar
TI - Oscillation criteria for two dimensional linear neutral delay difference systems
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 447
EP - 460
AB - In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form \[ \Delta \left[\begin{matrix} x(n)+p(n)x(n-m)\\ y(n)+p(n)y(n-m) \end{matrix} \right]= \left[\begin{matrix} a(n) & b(n) \\ c(n) & d(n) \end{matrix} \right]\left[\begin{matrix} x(n-\alpha )\\ y(n-\beta ) \end{matrix} \right] \] are established, where $m>0$, $\alpha \ge 0$, $\beta \ge 0$ are integers and $a(n)$, $b(n)$, $c(n)$, $d(n)$, $p(n)$ are sequences of real numbers.
LA - eng
KW - oscillation; nonoscillation; system of neutral equations; Krasnoselskii's fixed point theorem
UR - http://eudml.org/doc/299368
ER -

References

top
  1. Agarwal, R. P., 10.1201/9781420027020, Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). (2000) Zbl0952.39001MR1740241DOI10.1201/9781420027020
  2. Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D., 10.1155/9789775945198, Hindawi Publishing, New York (2005). (2005) Zbl1084.39001MR2179948DOI10.1155/9789775945198
  3. Agarwal, R. P., Wong, P. J. Y., 10.1007/978-94-015-8899-7, Mathematics and Its Applications (Dordrecht) 404. Kluwer Academic, Dordrecht (1997). (1997) Zbl0878.39001MR1447437DOI10.1007/978-94-015-8899-7
  4. Chatzarakis, G. E., Groumpas, E. I., Oscillations in systems of difference equations, Far East J. Dyn. Syst. 17 (2011), 17-31. (2011) Zbl1248.39011MR2934471
  5. Diblík, J., Łupińska, B., Růžičková, M., Zonenberg, J., 10.1186/s13662-015-0662-9, Adv. Difference Equ. 2015 (2015), Article ID 319, 11 pages. (2015) Zbl1422.39007MR3412562DOI10.1186/s13662-015-0662-9
  6. Elaydi, S. N., 10.1007/978-1-4757-9168-6, Undergraduate Texts in Mathematics. Springer, New York (1996). (1996) Zbl0840.39002MR1410259DOI10.1007/978-1-4757-9168-6
  7. Graef, J. R., Thandapani, E., 10.1016/S0898-1221(99)00246-1, Comput. Math. Appl. 38 (1999), 157-165. (1999) Zbl0964.39012MR1713170DOI10.1016/S0898-1221(99)00246-1
  8. Jiang, J., Tang, X., 10.1016/j.camwa.2005.10.020, Comput. Math. Appl. 54 (2007), 1240-1249. (2007) Zbl1148.39005MR2397675DOI10.1016/j.camwa.2005.10.020
  9. Li, W.-T., 10.1016/S0898-1221(01)00159-6, Comput. Math. Appl. 42 (2001), 341-355. (2001) Zbl1006.39013MR1837996DOI10.1016/S0898-1221(01)00159-6
  10. Migda, M., Schmeidel, E., Zdanowicz, M., 10.3934/dcdsb.2018024, Discrete Contin. Dyn. Syst., Ser. B 23 (2018), 359-367. (2018) Zbl1377.39023MR3721848DOI10.3934/dcdsb.2018024
  11. Parhi, N., Tripathy, A. K., Oscillatory behavior of second order difference equations, Commun. Appl. Nonlinear Anal. 6 (1999), 79-100. (1999) Zbl1110.39303MR1665966
  12. Parhi, N., Tripathy, A. K., 10.1080/1023619021000047680, J. Difference Equ. Appl. 9 (2003), 933-946. (2003) Zbl1135.39301MR1996344DOI10.1080/1023619021000047680
  13. Parhi, N., Tripathy, A. K., 10.1023/A:1022975525370, Czech. Math. J. 53 (2003), 83-101. (2003) Zbl1016.39011MR1962001DOI10.1023/A:1022975525370
  14. Schmeidel, E., 10.21136/MB.2010.140693, Math. Bohem. 135 (2010), 163-170. (2010) Zbl1224.39019MR2723083DOI10.21136/MB.2010.140693
  15. Schmeidel, E., Zdanowicz, M., 10.2478/tmmp-2021-0025, Tatra Mt. Math. Publ. 79 (2021), 149-162. (2021) Zbl07460182MR4378750DOI10.2478/tmmp-2021-0025
  16. Stević, S., Diblík, J., Iričanin, J., Šmarda, B. Z., 10.1155/2012/508523, Abstr. Appl. Anal. 2012 (2012), Article ID 508523, 22 pages. (2012) Zbl1242.39011MR2926886DOI10.1155/2012/508523
  17. Tripathy, A. K., Oscillation criteria for first-order systems of linear difference equations, Electron. J. Differ. Equ. 2009 (2009), Article ID 29, 11 pages. (2009) Zbl1165.39013MR2481103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.