On the least almost-prime in arithmetic progression
Jinjiang Li; Min Zhang; Yingchun Cai
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 177-188
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Jinjiang, Zhang, Min, and Cai, Yingchun. "On the least almost-prime in arithmetic progression." Czechoslovak Mathematical Journal 73.1 (2023): 177-188. <http://eudml.org/doc/299370>.
@article{Li2023,
abstract = {Let $\mathcal \{P\}_r$ denote an almost-prime with at most $r$ prime factors, counted according to multiplicity. Suppose that $a$ and $q$ are positive integers satisfying $(a,q)=1$. Denote by $\mathcal \{P\}_2(a,q)$ the least almost-prime $\mathcal \{P\}_2$ which satisfies $\mathcal \{P\}_2\equiv a\hspace\{4.44443pt\}(\@mod \; q)$. It is proved that for sufficiently large $q$, there holds \[ \mathcal \{P\}\_2(a,q)\ll q^\{1.8345\}. \]
This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range $1.845$ in place of $1.8345$.},
author = {Li, Jinjiang, Zhang, Min, Cai, Yingchun},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost-prime; arithmetic progression; linear sieve; Selberg’s $\Lambda ^2$-sieve},
language = {eng},
number = {1},
pages = {177-188},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the least almost-prime in arithmetic progression},
url = {http://eudml.org/doc/299370},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Li, Jinjiang
AU - Zhang, Min
AU - Cai, Yingchun
TI - On the least almost-prime in arithmetic progression
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 177
EP - 188
AB - Let $\mathcal {P}_r$ denote an almost-prime with at most $r$ prime factors, counted according to multiplicity. Suppose that $a$ and $q$ are positive integers satisfying $(a,q)=1$. Denote by $\mathcal {P}_2(a,q)$ the least almost-prime $\mathcal {P}_2$ which satisfies $\mathcal {P}_2\equiv a\hspace{4.44443pt}(\@mod \; q)$. It is proved that for sufficiently large $q$, there holds \[ \mathcal {P}_2(a,q)\ll q^{1.8345}. \]
This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range $1.845$ in place of $1.8345$.
LA - eng
KW - almost-prime; arithmetic progression; linear sieve; Selberg’s $\Lambda ^2$-sieve
UR - http://eudml.org/doc/299370
ER -
References
top- Halberstam, H., Richert, H.-E., Sieve Methods, London Mathematical Society Monographs 4. Academic Press, London (1974). (1974) Zbl0298.10026MR0424730
- Iwaniec, H., 10.4064/aa-37-1-307-320, Acta Arith. 37 (1980), 307-320. (1980) Zbl0444.10038MR0598883DOI10.4064/aa-37-1-307-320
- Iwaniec, H., 10.2969/jmsj/03410095, J. Math. Soc. Japan 34 (1982), 95-123. (1982) Zbl0486.10033MR0639808DOI10.2969/jmsj/03410095
- Jurkat, W. B., Richert, H.-E., 10.4064/aa-11-2-217-240, Acta Arith. 11 (1965), 217-240. (1965) Zbl0128.26902MR0202680DOI10.4064/aa-11-2-217-240
- Levin, B. V., On the least almost prime number in an arithmetic progression and the sequence , Usp. Mat. Nauk 20 (1965), 158-162 Russian. (1965) Zbl0154.30002MR0188173
- Mertens, F., 10.1515/crll.1874.78.46, J. Reine Angew. Math. 78 (1874), 46-63 German 9999JFM99999 06.0116.01. (1874) MR1579612DOI10.1515/crll.1874.78.46
- Motohashi, Y., 10.3792/pja/1195518371, Proc. Japan Acad. 52 (1976), 116-118. (1976) Zbl0361.10039MR0412128DOI10.3792/pja/1195518371
- Pan, C. D., Pan, C. B., Goldbach Conjecture, Science Press, Beijing (1992). (1992) Zbl0849.11080MR1287852
- Titchmarsh, E. C., 10.1007/BF03021203, Rend. Circ. Mat. Palermo 54 (1930), 414-429 9999JFM99999 56.0891.01. (1930) DOI10.1007/BF03021203
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.