On the least almost-prime in arithmetic progressions
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 535-548
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWu, Liuying. "On the least almost-prime in arithmetic progressions." Czechoslovak Mathematical Journal 74.2 (2024): 535-548. <http://eudml.org/doc/299549>.
@article{Wu2024,
abstract = {Let $\mathcal \{P\}_\{2\}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal \{P\}_\{2\}(q,a)$ denote the least $\mathcal \{P\}_\{2\}$ in the arithmetic progression $\lbrace nq+a\rbrace _\{n=1\}^\{\infty \}$. It is proved that for sufficiently large $q$, we have \[ \mathcal \{P\}\_\{2\}(q,a)\ll q^\{1.825\}. \]
This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal \{P\}_\{2\}(q,a)\ll q^\{1.8345\}.$},
author = {Wu, Liuying},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost-prime; arithmetic progression; linear sieve; Selberg’s $\Lambda ^2$-sieve},
language = {eng},
number = {2},
pages = {535-548},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the least almost-prime in arithmetic progressions},
url = {http://eudml.org/doc/299549},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Wu, Liuying
TI - On the least almost-prime in arithmetic progressions
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 535
EP - 548
AB - Let $\mathcal {P}_{2}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal {P}_{2}(q,a)$ denote the least $\mathcal {P}_{2}$ in the arithmetic progression $\lbrace nq+a\rbrace _{n=1}^{\infty }$. It is proved that for sufficiently large $q$, we have \[ \mathcal {P}_{2}(q,a)\ll q^{1.825}. \]
This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal {P}_{2}(q,a)\ll q^{1.8345}.$
LA - eng
KW - almost-prime; arithmetic progression; linear sieve; Selberg’s $\Lambda ^2$-sieve
UR - http://eudml.org/doc/299549
ER -
References
top- Halberstam, H., Richert, H.-E., Sieve Methods, London Mathematical Society Monographs 4. Academic Press, London (1974). (1974) Zbl0298.10026MR0424730
- Heath-Brown, D. R., 10.1017/S0305004100054657, Math. Proc. Camb. Philos. Soc. 83 (1978), 357-375. (1978) Zbl0375.10027MR0491558DOI10.1017/S0305004100054657
- Heath-Brown, D. R., 10.1112/plms/s3-64.2.265, Proc. Lond. Math. Soc., III. Ser. 64 (1992), 265-338. (1992) Zbl0739.11033MR1143227DOI10.1112/plms/s3-64.2.265
- Hooley, C., 10.1515/crll.1972.255.60, J. Reine Angew. Math. 255 (1972), 60-79. (1972) Zbl0252.10045MR0304328DOI10.1515/crll.1972.255.60
- Iwaniec, H., 10.4064/aa-37-1-307-320, Acta Arith. 37 (1980), 307-320. (1980) Zbl0444.10038MR0598883DOI10.4064/aa-37-1-307-320
- Iwaniec, H., 10.2969/jmsj/03410095, J. Math. Soc. Japan 34 (1982), 95-123. (1982) Zbl0486.10033MR0639808DOI10.2969/jmsj/03410095
- Iwaniec, H., Laborde, M., 10.5802/aif.848, Ann. Inst. Fourier 31 (1981), 37-56. (1981) Zbl0472.10048MR0644342DOI10.5802/aif.848
- Jurkat, W. B., Richert, H.-E., 10.4064/aa-11-2-217-240, Acta Arith. 11 (1965), 217-240. (1965) Zbl0128.26902MR0202680DOI10.4064/aa-11-2-217-240
- Laborde, M., 10.1112/S0025579300009803, Mathematika 26 (1979), 250-257. (1979) Zbl0429.10028MR0575644DOI10.1112/S0025579300009803
- Levin, B. V., On the least almost prime number in an arithmetic progression and the sequence , Usp. Mat. Nauk 20 (1965), 158-162 Russian. (1965) Zbl0154.30002MR0188173
- Li, J., Zhang, M., Cai, Y., 10.21136/CMJ.2022.0478-21, Czech. Math. J. 73 (2023), 177-188. (2023) Zbl07655761MR4541095DOI10.21136/CMJ.2022.0478-21
- Linnik, Y. V., On the least prime number in an arithmetic progression. I. The basic theorem, Mat. Sb., Nov. Ser. 15 (1944), 139-178 Russian. (1944) Zbl0063.03584MR0012111
- Linnik, Y. V., On the least prime number in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Mat. Sb., Nov. Ser. 15 (1944), 347-368 Russian. (1944) Zbl0063.03585MR0012112
- Mertens, F., 10.1515/crll.1874.78.46, J. Reine Angew. Math. 78 (1874), 46-62 German 9999JFM99999 06.0116.01. (1874) MR1579612DOI10.1515/crll.1874.78.46
- Motohashi, Y., 10.3792/pja/1195518371, Proc. Japan Acad. 52 (1976), 116-118. (1976) Zbl0361.10039MR0412128DOI10.3792/pja/1195518371
- Pan, C. D., Pan, C. B., Goldbach Conjecture, Science Press, Beijing (1992). (1992) Zbl0849.11080MR1287852
- Xylouris, T., 10.4064/aa150-1-4, Acta Arith. 150 (2011), 65-91. (2011) Zbl1248.11067MR2825574DOI10.4064/aa150-1-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.