On the least almost-prime in arithmetic progressions

Liuying Wu

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 535-548
  • ISSN: 0011-4642

Abstract

top
Let 𝒫 2 denote a positive integer with at most 2 prime factors, counted according to multiplicity. For integers a , q such that ( a , q ) = 1 , let 𝒫 2 ( q , a ) denote the least 𝒫 2 in the arithmetic progression { n q + a } n = 1 . It is proved that for sufficiently large q , we have 𝒫 2 ( q , a ) q 1 . 825 . This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained 𝒫 2 ( q , a ) q 1 . 8345 .

How to cite

top

Wu, Liuying. "On the least almost-prime in arithmetic progressions." Czechoslovak Mathematical Journal 74.2 (2024): 535-548. <http://eudml.org/doc/299549>.

@article{Wu2024,
abstract = {Let $\mathcal \{P\}_\{2\}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal \{P\}_\{2\}(q,a)$ denote the least $\mathcal \{P\}_\{2\}$ in the arithmetic progression $\lbrace nq+a\rbrace _\{n=1\}^\{\infty \}$. It is proved that for sufficiently large $q$, we have \[ \mathcal \{P\}\_\{2\}(q,a)\ll q^\{1.825\}. \] This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal \{P\}_\{2\}(q,a)\ll q^\{1.8345\}.$},
author = {Wu, Liuying},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost-prime; arithmetic progression; linear sieve; Selberg’s $\Lambda ^2$-sieve},
language = {eng},
number = {2},
pages = {535-548},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the least almost-prime in arithmetic progressions},
url = {http://eudml.org/doc/299549},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Wu, Liuying
TI - On the least almost-prime in arithmetic progressions
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 535
EP - 548
AB - Let $\mathcal {P}_{2}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal {P}_{2}(q,a)$ denote the least $\mathcal {P}_{2}$ in the arithmetic progression $\lbrace nq+a\rbrace _{n=1}^{\infty }$. It is proved that for sufficiently large $q$, we have \[ \mathcal {P}_{2}(q,a)\ll q^{1.825}. \] This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal {P}_{2}(q,a)\ll q^{1.8345}.$
LA - eng
KW - almost-prime; arithmetic progression; linear sieve; Selberg’s $\Lambda ^2$-sieve
UR - http://eudml.org/doc/299549
ER -

References

top
  1. Halberstam, H., Richert, H.-E., Sieve Methods, London Mathematical Society Monographs 4. Academic Press, London (1974). (1974) Zbl0298.10026MR0424730
  2. Heath-Brown, D. R., 10.1017/S0305004100054657, Math. Proc. Camb. Philos. Soc. 83 (1978), 357-375. (1978) Zbl0375.10027MR0491558DOI10.1017/S0305004100054657
  3. Heath-Brown, D. R., 10.1112/plms/s3-64.2.265, Proc. Lond. Math. Soc., III. Ser. 64 (1992), 265-338. (1992) Zbl0739.11033MR1143227DOI10.1112/plms/s3-64.2.265
  4. Hooley, C., 10.1515/crll.1972.255.60, J. Reine Angew. Math. 255 (1972), 60-79. (1972) Zbl0252.10045MR0304328DOI10.1515/crll.1972.255.60
  5. Iwaniec, H., 10.4064/aa-37-1-307-320, Acta Arith. 37 (1980), 307-320. (1980) Zbl0444.10038MR0598883DOI10.4064/aa-37-1-307-320
  6. Iwaniec, H., 10.2969/jmsj/03410095, J. Math. Soc. Japan 34 (1982), 95-123. (1982) Zbl0486.10033MR0639808DOI10.2969/jmsj/03410095
  7. Iwaniec, H., Laborde, M., 10.5802/aif.848, Ann. Inst. Fourier 31 (1981), 37-56. (1981) Zbl0472.10048MR0644342DOI10.5802/aif.848
  8. Jurkat, W. B., Richert, H.-E., 10.4064/aa-11-2-217-240, Acta Arith. 11 (1965), 217-240. (1965) Zbl0128.26902MR0202680DOI10.4064/aa-11-2-217-240
  9. Laborde, M., 10.1112/S0025579300009803, Mathematika 26 (1979), 250-257. (1979) Zbl0429.10028MR0575644DOI10.1112/S0025579300009803
  10. Levin, B. V., On the least almost prime number in an arithmetic progression and the sequence k 2 x 2 + 1 , Usp. Mat. Nauk 20 (1965), 158-162 Russian. (1965) Zbl0154.30002MR0188173
  11. Li, J., Zhang, M., Cai, Y., 10.21136/CMJ.2022.0478-21, Czech. Math. J. 73 (2023), 177-188. (2023) Zbl07655761MR4541095DOI10.21136/CMJ.2022.0478-21
  12. Linnik, Y. V., On the least prime number in an arithmetic progression. I. The basic theorem, Mat. Sb., Nov. Ser. 15 (1944), 139-178 Russian. (1944) Zbl0063.03584MR0012111
  13. Linnik, Y. V., On the least prime number in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Mat. Sb., Nov. Ser. 15 (1944), 347-368 Russian. (1944) Zbl0063.03585MR0012112
  14. Mertens, F., 10.1515/crll.1874.78.46, J. Reine Angew. Math. 78 (1874), 46-62 German 9999JFM99999 06.0116.01. (1874) MR1579612DOI10.1515/crll.1874.78.46
  15. Motohashi, Y., 10.3792/pja/1195518371, Proc. Japan Acad. 52 (1976), 116-118. (1976) Zbl0361.10039MR0412128DOI10.3792/pja/1195518371
  16. Pan, C. D., Pan, C. B., Goldbach Conjecture, Science Press, Beijing (1992). (1992) Zbl0849.11080MR1287852
  17. Xylouris, T., 10.4064/aa150-1-4, Acta Arith. 150 (2011), 65-91. (2011) Zbl1248.11067MR2825574DOI10.4064/aa150-1-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.