Weighted w -core inverses in rings

Liyun Wu; Huihui Zhu

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 581-602
  • ISSN: 0011-4642

Abstract

top
Let R be a unital * -ring. For any a , s , t , v , w R we define the weighted w -core inverse and the weighted dual s -core inverse, extending the w -core inverse and the dual s -core inverse, respectively. An element a R has a weighted w -core inverse with the weight v if there exists some x R such that a w x v x = x , x v a w a = a and ( a w x ) * = a w x . Dually, an element a R has a weighted dual s -core inverse with the weight t if there exists some y R such that y t y s a = y , a s a t y = a and ( y s a ) * = y s a . Several characterizations of weighted w -core invertible and weighted dual s -core invertible elements are given when weights v and t are invertible Hermitian elements. Also, the relations among the weighted w -core inverse, the weighted dual s -core inverse, the e -core inverse, the dual f -core inverse, the weighted Moore-Penrose inverse and the ( v , w ) - ( b , c ) -inverse are considered.

How to cite

top

Wu, Liyun, and Zhu, Huihui. "Weighted $w$-core inverses in rings." Czechoslovak Mathematical Journal 73.2 (2023): 581-602. <http://eudml.org/doc/299373>.

@article{Wu2023,
abstract = {Let $R$ be a unital $\ast $-ring. For any $a,s,t,v,w\in R$ we define the weighted $w$-core inverse and the weighted dual $s$-core inverse, extending the $w$-core inverse and the dual $s$-core inverse, respectively. An element $a\in R$ has a weighted $w$-core inverse with the weight $v$ if there exists some $x\in R$ such that $awxvx=x$, $xvawa=a$ and $(awx)^*=awx$. Dually, an element $a\in R$ has a weighted dual $s$-core inverse with the weight $t$ if there exists some $y\in R$ such that $ytysa=y$, $asaty=a$ and $(ysa)^*=ysa$. Several characterizations of weighted $w$-core invertible and weighted dual $s$-core invertible elements are given when weights $v$ and $t$ are invertible Hermitian elements. Also, the relations among the weighted $w$-core inverse, the weighted dual $s$-core inverse, the $e$-core inverse, the dual $f$-core inverse, the weighted Moore-Penrose inverse and the $(v,w)$-$(b,c)$-inverse are considered.},
author = {Wu, Liyun, Zhu, Huihui},
journal = {Czechoslovak Mathematical Journal},
keywords = {inverse along an element; $\lbrace e, 1, 3\rbrace $-inverse; $\{\lbrace f, 1, 4\}\rbrace $-inverse; weighted Moore-Penrose inverse; $(v,w)$-$(b,c)$-inverse; $w$-core inverse; dual $v$-core inverse},
language = {eng},
number = {2},
pages = {581-602},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weighted $w$-core inverses in rings},
url = {http://eudml.org/doc/299373},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Wu, Liyun
AU - Zhu, Huihui
TI - Weighted $w$-core inverses in rings
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 581
EP - 602
AB - Let $R$ be a unital $\ast $-ring. For any $a,s,t,v,w\in R$ we define the weighted $w$-core inverse and the weighted dual $s$-core inverse, extending the $w$-core inverse and the dual $s$-core inverse, respectively. An element $a\in R$ has a weighted $w$-core inverse with the weight $v$ if there exists some $x\in R$ such that $awxvx=x$, $xvawa=a$ and $(awx)^*=awx$. Dually, an element $a\in R$ has a weighted dual $s$-core inverse with the weight $t$ if there exists some $y\in R$ such that $ytysa=y$, $asaty=a$ and $(ysa)^*=ysa$. Several characterizations of weighted $w$-core invertible and weighted dual $s$-core invertible elements are given when weights $v$ and $t$ are invertible Hermitian elements. Also, the relations among the weighted $w$-core inverse, the weighted dual $s$-core inverse, the $e$-core inverse, the dual $f$-core inverse, the weighted Moore-Penrose inverse and the $(v,w)$-$(b,c)$-inverse are considered.
LA - eng
KW - inverse along an element; $\lbrace e, 1, 3\rbrace $-inverse; ${\lbrace f, 1, 4}\rbrace $-inverse; weighted Moore-Penrose inverse; $(v,w)$-$(b,c)$-inverse; $w$-core inverse; dual $v$-core inverse
UR - http://eudml.org/doc/299373
ER -

References

top
  1. Baksalary, O. M., Trenkler, G., 10.1080/03081080902778222, Linear Multilinear Algebra 58 (2010), 681-697. (2010) Zbl1202.15009MR2722752DOI10.1080/03081080902778222
  2. Benítez, J., Boasso, E., 10.13001/1081-3810.3113, Electron. J. Linear Algebra 31 (2016), 572-592. (2016) Zbl1351.15004MR3578393DOI10.13001/1081-3810.3113
  3. Benítez, J., Boasso, E., 10.1080/03081087.2016.1183559, Linear Multilinear Algebra 65 (2017), 284-299. (2017) Zbl1361.15004MR3577449DOI10.1080/03081087.2016.1183559
  4. Benítez, J., Boasso, E., Jin, H., 10.13001/1081-3810.3487, Electron. J. Linear Algebra 32 (2017), 391-422. (2017) Zbl1386.15016MR3761550DOI10.13001/1081-3810.3487
  5. Cline, R. E., An Application of Representation for the Generalized Inverse of a Matrix, MRC Technical Report 592. University of Wisconsin, Madison (1965). (1965) 
  6. Drazin, M. P., 10.2307/2308576, Am. Math. Mon. 65 (1958), 506-514. (1958) Zbl0083.02901MR0098762DOI10.2307/2308576
  7. Drazin, M. P., 10.1016/j.laa.2011.09.004, Linear Algebra Appl. 436 (2012), 1909-1923. (2012) Zbl1254.15005MR2889966DOI10.1016/j.laa.2011.09.004
  8. Drazin, M. P., 10.1080/00927872.2019.1687712, Commun. Algebra 48 (2020), 1423-1438. (2020) Zbl1466.18003MR4079318DOI10.1080/00927872.2019.1687712
  9. Ferreyra, D. E., Levis, F. E., Thome, N., 10.2989/16073606.2017.1377779, Quaest. Math. 41 (2018), 265-281. (2018) Zbl1390.15010MR3777887DOI10.2989/16073606.2017.1377779
  10. Gao, Y., Chen, J., 10.1080/00927872.2016.1260729, Commun. Algebra 46 (2018), 38-50. (2018) Zbl1392.15005MR3764841DOI10.1080/00927872.2016.1260729
  11. Hartwig, R. E., Luh, J., 10.2140/pjm.1977.71.449, Pac. J. Math. 71 (1977), 449-461. (1977) Zbl0355.16005MR0442018DOI10.2140/pjm.1977.71.449
  12. Jacobson, N., 10.2307/2371731, Am. J. Math. 67 (1945), 300-320. (1945) Zbl0060.07305MR0012271DOI10.2307/2371731
  13. Li, T., Chen, J., 10.1080/03081087.2017.1320963, Linear Multilinear Algebra 66 (2018), 717-730. (2018) Zbl1392.15008MR3779145DOI10.1080/03081087.2017.1320963
  14. Malika, S. B., Thome, N., 10.1016/j.amc.2013.10.060, Appl. Math. Comput. 226 (2014), 575-580. (2014) Zbl1354.15003MR3144334DOI10.1016/j.amc.2013.10.060
  15. Mary, X., 10.1016/j.laa.2010.11.045, Linear Algebra Appl. 434 (2011), 1836-1844. (2011) Zbl1219.15007MR2775774DOI10.1016/j.laa.2010.11.045
  16. Mary, X., Patrício, P., 10.1016/j.amc.2012.06.060, Appl. Math. Comput. 219 (2012), 886-891. (2012) Zbl1287.15001MR2981280DOI10.1016/j.amc.2012.06.060
  17. Mary, X., Patrício, P., 10.1080/03081087.2012.731054, Linear Multilinear Algebra 61 (2013), 1130-1135. (2013) Zbl1383.15005MR3175351DOI10.1080/03081087.2012.731054
  18. Mosić, D., Deng, C., Ma, H., 10.1080/00927872.2017.1378895, Commun. Algebra 46 (2018), 2332-2345. (2018) Zbl1427.16034MR3778394DOI10.1080/00927872.2017.1378895
  19. Mosić, D., Stanimirović, P. S., Sahoo, J. K., Behera, R., Katsikis, V. N., 10.1016/j.cam.2020.113293, J. Comput. Appl. Math. 388 (2021), Article ID 113293, 23 pages. (2021) Zbl1458.15010MR4185119DOI10.1016/j.cam.2020.113293
  20. Penrose, R., 10.1017/S0305004100030401, Proc. Camb. Philos. Soc. 51 (1955), 406-413. (1955) Zbl0065.24603MR0069793DOI10.1017/S0305004100030401
  21. Prasad, K. M., Bapat, R. B., 10.1016/0024-3795(92)90229-4, Linear Algebra Appl. 165 (1992), 59-69. (1992) Zbl0743.15007MR1149746DOI10.1016/0024-3795(92)90229-4
  22. Prasad, K. M., Mohana, K. S., 10.1080/03081087.2013.791690, Linear Multilinear Algebra 62 (2014), 792-802. (2014) Zbl1306.15006MR1306.15006DOI10.1080/03081087.2013.791690
  23. Rakić, D. S., Dinčić, N. Č., Djordjević, D. S., 10.1016/j.laa.2014.09.003, Linear Algebra Appl. 463 (2014), 115-133. (2014) Zbl1297.15006MR3262392DOI10.1016/j.laa.2014.09.003
  24. Rao, C. R., Mitra, S. K., Generalized Inverse of a Matrices and Its Application, Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1971). (1971) Zbl0236.15004MR0338013
  25. Wang, H., Liu, X., 10.1080/03081087.2014.975702, Linear Multilinear Algebra 63 (2015), 1829-1836. (2015) Zbl1325.15002MR3305012DOI10.1080/03081087.2014.975702
  26. Zhu, H., Wang, Q.-W., 10.1080/03081087.2019.1585742, Linear Multilinear Algebra 68 (2020), 2434-2447. (2020) Zbl1459.16037MR4171235DOI10.1080/03081087.2019.1585742
  27. Zhu, H., Wang, Q.-W., 10.1007/s11401-021-0282-5, Chin. Ann. Math., Ser. B 42 (2021), 613-624. (2021) Zbl1491.16040MR4289196DOI10.1007/s11401-021-0282-5
  28. Zhu, H., Wu, L., Chen, J., 10.1080/00927872.2022.2150771, (to appear) in Comm. Algebra. MR4561472DOI10.1080/00927872.2022.2150771
  29. Zhu, H., Wu, L., Mosić, D., 10.1080/03081087.2022.2035308, (to appear) in Linear Multilinear Algebra. MR4577209DOI10.1080/03081087.2022.2035308

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.