On forward and inverse uncertainty quantification for a model for a magneto mechanical device involving a hysteresis operator

Olaf Klein

Applications of Mathematics (2023)

  • Volume: 68, Issue: 6, page 795-828
  • ISSN: 0862-7940

Abstract

top
Modeling real world objects and processes one may have to deal with hysteresis effects but also with uncertainties. Following D. Davino, P. Krejčí, and C. Visone (2013), a model for a magnetostrictive material involving a generalized Prandtl-Ishlinski-operator is considered here. Using results of measurements, some parameters in the model are determined and inverse Uncertainty Quantification (UQ) is used to determine random densities to describe the remaining parameters and their uncertainties. Afterwards, the results are used to perform forward UQ and to compare the generated outputs with measured data. This extends some of the results from O. Klein, D. Davino, and C. Visone (2020).

How to cite

top

Klein, Olaf. "On forward and inverse uncertainty quantification for a model for a magneto mechanical device involving a hysteresis operator." Applications of Mathematics 68.6 (2023): 795-828. <http://eudml.org/doc/299375>.

@article{Klein2023,
abstract = {Modeling real world objects and processes one may have to deal with hysteresis effects but also with uncertainties. Following D. Davino, P. Krejčí, and C. Visone (2013), a model for a magnetostrictive material involving a generalized Prandtl-Ishlinski-operator is considered here. Using results of measurements, some parameters in the model are determined and inverse Uncertainty Quantification (UQ) is used to determine random densities to describe the remaining parameters and their uncertainties. Afterwards, the results are used to perform forward UQ and to compare the generated outputs with measured data. This extends some of the results from O. Klein, D. Davino, and C. Visone (2020).},
author = {Klein, Olaf},
journal = {Applications of Mathematics},
keywords = {hysteresis; uncertainty quantification (UQ); magnetostrictive material; Bayesian inverse problems (BIP)},
language = {eng},
number = {6},
pages = {795-828},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On forward and inverse uncertainty quantification for a model for a magneto mechanical device involving a hysteresis operator},
url = {http://eudml.org/doc/299375},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Klein, Olaf
TI - On forward and inverse uncertainty quantification for a model for a magneto mechanical device involving a hysteresis operator
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 6
SP - 795
EP - 828
AB - Modeling real world objects and processes one may have to deal with hysteresis effects but also with uncertainties. Following D. Davino, P. Krejčí, and C. Visone (2013), a model for a magnetostrictive material involving a generalized Prandtl-Ishlinski-operator is considered here. Using results of measurements, some parameters in the model are determined and inverse Uncertainty Quantification (UQ) is used to determine random densities to describe the remaining parameters and their uncertainties. Afterwards, the results are used to perform forward UQ and to compare the generated outputs with measured data. This extends some of the results from O. Klein, D. Davino, and C. Visone (2020).
LA - eng
KW - hysteresis; uncertainty quantification (UQ); magnetostrictive material; Bayesian inverse problems (BIP)
UR - http://eudml.org/doc/299375
ER -

References

top
  1. Janaideh, M. Al, Visone, C., Davino, D., Krejčí, P., 10.1109/ACC.2014.6858952, American Control Conference (ACC) Portland, Oregon (2014), 4759-4764. (2014) DOI10.1109/ACC.2014.6858952
  2. Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8, Applied Mathematical Sciences 121. Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8
  3. Davino, D., Krejčí, P., Visone, C., 10.1088/0964-1726/22/9/095009, Smart Mater. Struct. 22 (2013), Article ID 095009. (2013) DOI10.1088/0964-1726/22/9/095009
  4. Davino, D., Visone, C., 10.3934/dcdss.2015.8.649, Discrete Contin. Dyn. Syst., Ser. S 8 (2015), 649-691. (2015) Zbl1302.93028MR3356455DOI10.3934/dcdss.2015.8.649
  5. Grimmett, G., Stirzaker, D., Probability and Random Processes, Oxford University Press, New York (2001). (2001) Zbl1015.60002MR2059709
  6. Kaipio, J., Somersalo, E., 10.1007/b138659, Applied Mathematical Sciences 160. Springer, New York (2005). (2005) Zbl1068.65022MR2102218DOI10.1007/b138659
  7. Klein, O., Davino, D., Visone, C., 10.1051/mmnp/2020009, Math. Model. Nat. Phenom. 15 (2020), Article ID 53, 19 pages. (2020) Zbl07372583MR4175380DOI10.1051/mmnp/2020009
  8. Klein, O., Krejčí, P., 10.1016/S1468-1218(03)00013-0, Nonlinear Anal., Real World Appl. 4 (2003), 755-785. (2003) Zbl1043.47047MR1978561DOI10.1016/S1468-1218(03)00013-0
  9. Krasnosel'skij, M. A., Pokrovskij, A. V., 10.1007/978-3-642-61302-9, Springer, Berlin (1989). (1989) Zbl0665.47038MR0987431DOI10.1007/978-3-642-61302-9
  10. Krejčí, P., Hysteresis, Convexity and Dissipation in Hyperbolic Equations, GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). (1996) Zbl1187.35003MR2466538
  11. Krejčí, P., 10.1016/S1874-5717(06)80007-1, Evolutionary Equations. Vol. II Handbook of Differential Equations. Elsevier, Amsterdam (2005), 303-370. (2005) Zbl1098.35030MR2182830DOI10.1016/S1874-5717(06)80007-1
  12. Lee, P. M., Bayesian Statistics: An Introduction, John Wiley & Sons, Chichester (2012). (2012) Zbl1258.62028MR3237439
  13. Marelli, S., Sudret, B., 10.1061/9780784413609.257, Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management American Society of Civil Engineers, Reston (2014). (2014) DOI10.1061/9780784413609.257
  14. Mayergoyz, I. D., 10.1007/978-1-4612-3028-1, Springer, New York (1991). (1991) Zbl0723.73003MR1083150DOI10.1007/978-1-4612-3028-1
  15. Moustapha, M., Lataniotis, C., Wiederkehr, P., Wagner, P.-R., Wicaksono, D., Marelli, S., Sudret, B., UQLib User Manual, ETH, Zürich (2022), Available at https://www.uqlab.com/uqlib-user-manual. (2022) 
  16. Pawitan, Y., In All Likelihood: Statistical Modelling and Inference Using Likelihood, Oxford Science Publications. Oxford University Press, Oxford (2001). (2001) Zbl1013.62001
  17. Smith, R. C., 10.1137/1.9781611973228, Computational Science & Engineering 12. SIAM, Philadelphia (2014). (2014) Zbl1284.65019MR3155184DOI10.1137/1.9781611973228
  18. Sullivan, T. J., 10.1007/978-3-319-23395-6, Texts in Applied Mathematics 63. Springer, Cham (2015). (2015) Zbl1336.60002MR3364576DOI10.1007/978-3-319-23395-6
  19. Visintin, A., 10.1007/978-3-662-11557-2, Applied Mathematical Sciences 111. Springer, Berlin (1994). (1994) Zbl0820.35004MR1329094DOI10.1007/978-3-662-11557-2
  20. Visone, C., Sjöström, M., 10.1016/j.physb.2003.08.087, Phys. B, Condens. Matter 343 (2004), 148-152. (2004) DOI10.1016/j.physb.2003.08.087
  21. Wagner, P.-R., Nagel, J., Marelli, S., Sudret, B., UQLab User Manual: Bayesian Inversion for Model Calibration and Validation, ETH, Zürich (2022), Available at https://www.uqlab.com/inversion-user-manual. (2022) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.