A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations
Mathematica Bohemica (2024)
- Volume: 149, Issue: 3, page 317-336
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNaito, Manabu. "A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations." Mathematica Bohemica 149.3 (2024): 317-336. <http://eudml.org/doc/299377>.
@article{Naito2024,
abstract = {The half-linear differential equation \[ (|u^\{\prime \}|^\{\alpha \}\{\rm sgn\} u^\{\prime \})^\{\prime \} = \alpha (\lambda ^\{\alpha + 1\} + b(t))|u|^\{\alpha \}\{\rm sgn\} u, \quad t \ge t\_\{0\}, \]
is considered, where $\alpha $ and $\lambda $ are positive constants and $b(t)$ is a real-valued continuous function on $[t_\{0\},\infty )$. It is proved that, under a mild integral smallness condition of $b(t)$ which is weaker than the absolutely integrable condition of $b(t)$, the above equation has a nonoscillatory solution $u_\{0\}(t)$ such that $u_\{0\}(t) \sim \{\rm e\}^\{- \lambda t\}$ and $u_\{0\}^\{\prime \}(t) \sim - \lambda \{\rm e\}^\{- \lambda t\}$ ($t \rightarrow \infty $), and a nonoscillatory solution $u_\{1\}(t)$ such that $u_\{1\}(t) \sim \{\rm e\}^\{\lambda t\}$ and $u_\{1\}^\{\prime \}(t) \sim \lambda \{\rm e\}^\{\lambda t\}$ ($t \rightarrow \infty $).},
author = {Naito, Manabu},
journal = {Mathematica Bohemica},
keywords = {half-linear differential equation; nonoscillatory solution; asymptotic form},
language = {eng},
number = {3},
pages = {317-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations},
url = {http://eudml.org/doc/299377},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Naito, Manabu
TI - A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 317
EP - 336
AB - The half-linear differential equation \[ (|u^{\prime }|^{\alpha }{\rm sgn} u^{\prime })^{\prime } = \alpha (\lambda ^{\alpha + 1} + b(t))|u|^{\alpha }{\rm sgn} u, \quad t \ge t_{0}, \]
is considered, where $\alpha $ and $\lambda $ are positive constants and $b(t)$ is a real-valued continuous function on $[t_{0},\infty )$. It is proved that, under a mild integral smallness condition of $b(t)$ which is weaker than the absolutely integrable condition of $b(t)$, the above equation has a nonoscillatory solution $u_{0}(t)$ such that $u_{0}(t) \sim {\rm e}^{- \lambda t}$ and $u_{0}^{\prime }(t) \sim - \lambda {\rm e}^{- \lambda t}$ ($t \rightarrow \infty $), and a nonoscillatory solution $u_{1}(t)$ such that $u_{1}(t) \sim {\rm e}^{\lambda t}$ and $u_{1}^{\prime }(t) \sim \lambda {\rm e}^{\lambda t}$ ($t \rightarrow \infty $).
LA - eng
KW - half-linear differential equation; nonoscillatory solution; asymptotic form
UR - http://eudml.org/doc/299377
ER -
References
top- Coppel, W. A., Stability and Asymptotic Behavior of Differential Equations, Heath Mathematical Monographs. Heath, Boston (1965). (1965) Zbl0154.09301MR0190463
- Došlý, O., Řehák, P., 10.1016/s0304-0208(05)x8001-x, North-Holland Mathematics Studies 202. Elsevier, Amsterdam (2005). (2005) Zbl1090.34001MR2158903DOI10.1016/s0304-0208(05)x8001-x
- Hartman, P., 10.1137/1.9780898719222, John Wiley, New York (1964). (1964) Zbl0125.32102MR0171038DOI10.1137/1.9780898719222
- Jaroš, J., Takaŝi, K., Tanigawa, T., 10.1016/j.na.2005.05.045, Nonlinear Anal., Theory Methods Appl., Ser. A 64 (2006), 762-787. (2006) Zbl1103.34017MR2197094DOI10.1016/j.na.2005.05.045
- Kusano, T., Manojlović, J., 10.14232/ejqtde.2016.1.62, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Article ID 62, 24 pages. (2016) Zbl1389.34164MR3547438DOI10.14232/ejqtde.2016.1.62
- Luey, S., Usami, H., 10.1504/IJDSDE.2021.117360, Int. J. Dyn. Syst. Differ. Equ. 11 (2021), 378-390. (2021) Zbl1482.34130MR4318173DOI10.1504/IJDSDE.2021.117360
- Luey, S., Usami, H., 10.5817/AM2021-1-27, Arch. Math., Brno 57 (2021), 27-39. (2021) Zbl07332702MR4260838DOI10.5817/AM2021-1-27
- Naito, M., 10.1007/s00013-020-01573-x, Arch. Math. 116 (2021), 559-570. (2021) Zbl1468.34076MR4248549DOI10.1007/s00013-020-01573-x
- Naito, M., 10.7494/OpMath.2021.41.1.71, Opusc. Math. 41 (2021), 71-94. (2021) Zbl1478.34064MR4302442DOI10.7494/OpMath.2021.41.1.71
- Naito, M., 10.5817/AM2021-1-41, Arch. Math., Brno 57 (2021), 41-60. (2021) Zbl07332703MR4260839DOI10.5817/AM2021-1-41
- Naito, M., Usami, H., 10.1016/j.jde.2022.02.025, J. Differ. Equations 318 (2022), 359-383. (2022) Zbl1497.34075MR4387287DOI10.1016/j.jde.2022.02.025
- Řehák, P., 10.1016/j.amc.2016.07.020, Appl. Math. Comput. 292 (2017), 165-177. (2017) Zbl1410.34104MR3542549DOI10.1016/j.amc.2016.07.020
- Řehák, P., 10.1016/j.aml.2021.107425, Appl. Math. Lett. 121 (2021), Article ID 107425, 7 pages. (2021) Zbl1487.34106MR4268643DOI10.1016/j.aml.2021.107425
- Řehák, P., Taddei, V., 10.57262/die/1462298681, Differ. Integral Equ. 29 (2016), 683-714. (2016) Zbl1374.34206MR3498873DOI10.57262/die/1462298681
- Takaŝi, K., Manojlović, J. V., 10.1515/gmj-2020-2070, Georgian Math. J. 28 (2021), 611-636. (2021) Zbl1476.34115MR4292900DOI10.1515/gmj-2020-2070
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.