A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations

Manabu Naito

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 3, page 317-336
  • ISSN: 0862-7959

Abstract

top
The half-linear differential equation ( | u ' | α sgn u ' ) ' = α ( λ α + 1 + b ( t ) ) | u | α sgn u , t t 0 , is considered, where α and λ are positive constants and b ( t ) is a real-valued continuous function on [ t 0 , ) . It is proved that, under a mild integral smallness condition of b ( t ) which is weaker than the absolutely integrable condition of b ( t ) , the above equation has a nonoscillatory solution u 0 ( t ) such that u 0 ( t ) e - λ t and u 0 ' ( t ) - λ e - λ t ( t ), and a nonoscillatory solution u 1 ( t ) such that u 1 ( t ) e λ t and u 1 ' ( t ) λ e λ t ( t ).

How to cite

top

Naito, Manabu. "A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations." Mathematica Bohemica 149.3 (2024): 317-336. <http://eudml.org/doc/299377>.

@article{Naito2024,
abstract = {The half-linear differential equation \[ (|u^\{\prime \}|^\{\alpha \}\{\rm sgn\} u^\{\prime \})^\{\prime \} = \alpha (\lambda ^\{\alpha + 1\} + b(t))|u|^\{\alpha \}\{\rm sgn\} u, \quad t \ge t\_\{0\}, \] is considered, where $\alpha $ and $\lambda $ are positive constants and $b(t)$ is a real-valued continuous function on $[t_\{0\},\infty )$. It is proved that, under a mild integral smallness condition of $b(t)$ which is weaker than the absolutely integrable condition of $b(t)$, the above equation has a nonoscillatory solution $u_\{0\}(t)$ such that $u_\{0\}(t) \sim \{\rm e\}^\{- \lambda t\}$ and $u_\{0\}^\{\prime \}(t) \sim - \lambda \{\rm e\}^\{- \lambda t\}$ ($t \rightarrow \infty $), and a nonoscillatory solution $u_\{1\}(t)$ such that $u_\{1\}(t) \sim \{\rm e\}^\{\lambda t\}$ and $u_\{1\}^\{\prime \}(t) \sim \lambda \{\rm e\}^\{\lambda t\}$ ($t \rightarrow \infty $).},
author = {Naito, Manabu},
journal = {Mathematica Bohemica},
keywords = {half-linear differential equation; nonoscillatory solution; asymptotic form},
language = {eng},
number = {3},
pages = {317-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations},
url = {http://eudml.org/doc/299377},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Naito, Manabu
TI - A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 317
EP - 336
AB - The half-linear differential equation \[ (|u^{\prime }|^{\alpha }{\rm sgn} u^{\prime })^{\prime } = \alpha (\lambda ^{\alpha + 1} + b(t))|u|^{\alpha }{\rm sgn} u, \quad t \ge t_{0}, \] is considered, where $\alpha $ and $\lambda $ are positive constants and $b(t)$ is a real-valued continuous function on $[t_{0},\infty )$. It is proved that, under a mild integral smallness condition of $b(t)$ which is weaker than the absolutely integrable condition of $b(t)$, the above equation has a nonoscillatory solution $u_{0}(t)$ such that $u_{0}(t) \sim {\rm e}^{- \lambda t}$ and $u_{0}^{\prime }(t) \sim - \lambda {\rm e}^{- \lambda t}$ ($t \rightarrow \infty $), and a nonoscillatory solution $u_{1}(t)$ such that $u_{1}(t) \sim {\rm e}^{\lambda t}$ and $u_{1}^{\prime }(t) \sim \lambda {\rm e}^{\lambda t}$ ($t \rightarrow \infty $).
LA - eng
KW - half-linear differential equation; nonoscillatory solution; asymptotic form
UR - http://eudml.org/doc/299377
ER -

References

top
  1. Coppel, W. A., Stability and Asymptotic Behavior of Differential Equations, Heath Mathematical Monographs. Heath, Boston (1965). (1965) Zbl0154.09301MR0190463
  2. Došlý, O., Řehák, P., 10.1016/s0304-0208(05)x8001-x, North-Holland Mathematics Studies 202. Elsevier, Amsterdam (2005). (2005) Zbl1090.34001MR2158903DOI10.1016/s0304-0208(05)x8001-x
  3. Hartman, P., 10.1137/1.9780898719222, John Wiley, New York (1964). (1964) Zbl0125.32102MR0171038DOI10.1137/1.9780898719222
  4. Jaroš, J., Takaŝi, K., Tanigawa, T., 10.1016/j.na.2005.05.045, Nonlinear Anal., Theory Methods Appl., Ser. A 64 (2006), 762-787. (2006) Zbl1103.34017MR2197094DOI10.1016/j.na.2005.05.045
  5. Kusano, T., Manojlović, J., 10.14232/ejqtde.2016.1.62, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Article ID 62, 24 pages. (2016) Zbl1389.34164MR3547438DOI10.14232/ejqtde.2016.1.62
  6. Luey, S., Usami, H., 10.1504/IJDSDE.2021.117360, Int. J. Dyn. Syst. Differ. Equ. 11 (2021), 378-390. (2021) Zbl1482.34130MR4318173DOI10.1504/IJDSDE.2021.117360
  7. Luey, S., Usami, H., 10.5817/AM2021-1-27, Arch. Math., Brno 57 (2021), 27-39. (2021) Zbl07332702MR4260838DOI10.5817/AM2021-1-27
  8. Naito, M., 10.1007/s00013-020-01573-x, Arch. Math. 116 (2021), 559-570. (2021) Zbl1468.34076MR4248549DOI10.1007/s00013-020-01573-x
  9. Naito, M., 10.7494/OpMath.2021.41.1.71, Opusc. Math. 41 (2021), 71-94. (2021) Zbl1478.34064MR4302442DOI10.7494/OpMath.2021.41.1.71
  10. Naito, M., 10.5817/AM2021-1-41, Arch. Math., Brno 57 (2021), 41-60. (2021) Zbl07332703MR4260839DOI10.5817/AM2021-1-41
  11. Naito, M., Usami, H., 10.1016/j.jde.2022.02.025, J. Differ. Equations 318 (2022), 359-383. (2022) Zbl1497.34075MR4387287DOI10.1016/j.jde.2022.02.025
  12. Řehák, P., 10.1016/j.amc.2016.07.020, Appl. Math. Comput. 292 (2017), 165-177. (2017) Zbl1410.34104MR3542549DOI10.1016/j.amc.2016.07.020
  13. Řehák, P., 10.1016/j.aml.2021.107425, Appl. Math. Lett. 121 (2021), Article ID 107425, 7 pages. (2021) Zbl1487.34106MR4268643DOI10.1016/j.aml.2021.107425
  14. Řehák, P., Taddei, V., 10.57262/die/1462298681, Differ. Integral Equ. 29 (2016), 683-714. (2016) Zbl1374.34206MR3498873DOI10.57262/die/1462298681
  15. Takaŝi, K., Manojlović, J. V., 10.1515/gmj-2020-2070, Georgian Math. J. 28 (2021), 611-636. (2021) Zbl1476.34115MR4292900DOI10.1515/gmj-2020-2070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.